zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Delay-dependent stabilization for stochastic fuzzy systems with time delays. (English) Zbl 1122.93051
Summary: This paper is concerned with the delay-dependent stabilization problem for a class of time-delay stochastic fuzzy systems. The time delays are assumed to appear in both the state and the control input. The purpose is the design of a state-feedback fuzzy controller such that the resulting closed-loop system is asymptotically stable in the mean square. A delay-dependent condition for the solvability of this problem is obtained in terms of relaxed linear matrix inequalities (LMIs). By solving these LMIs, a desired controller can be obtained. Finally, a numerical example is given to demonstrate the effectiveness of the present results.

93C42Fuzzy control systems
93E03General theory of stochastic systems
93E15Stochastic stability
LMI toolbox
Full Text: DOI
[1] Cao, S. G.; Rees, N. W.; Feng, G.: Analysis and design of a class of continuous time fuzzy control systems. Int. J. Control 64, 1069-1087 (1996) · Zbl 0867.93053
[2] Cao, Y. Y.; Frank, P. M.: Analysis and synthesis of nonlinear time-delay systems via fuzzy control approach. IEEE trans. Fuzzy systems 8, No. 2, 200-211 (2000)
[3] Cao, Y. Y.; Frank, P. M.: Stability analysis and synthesis of nonlinear time-delay systems via linear Takagi-sugeno fuzzy models. Fuzzy sets and systems 124, 213-229 (2001) · Zbl 1002.93051
[4] Cao, Y. Y.; Lin, Z.: Robust stability analysis and fuzzy-scheduling control for nonlinear systems subject to actuator saturation. IEEE trans. Fuzzy systems 11, No. 1, 57-67 (2003)
[5] Chen, B.; Zhang, W.: Stochastic H2/H$\infty $ control with state-dependent noise. IEEE trans. Automat. control 49, No. 1, 45-57 (2004)
[6] Chen, W. -H.; Guan, Z. -H.; Lu, X.: Delay-dependent robust stabilization and H$\infty $-control of uncertain stochastic systems with time-varying delay. IMA J. Math. control inform. 21, No. 3, 345-358 (2004) · Zbl 1053.93012
[7] Gahinet, P.; Nemirovskii, A.; Laub, A. J.; Chilali, M.: LMI control toolbox user’s guide. (1995)
[8] H. Huang, D.W.C. Ho, Y. Niu, Sliding mode based fuzzy control of stochastic systems with time delay, in: Proc. 6th World Congress on Intelligent Control and Automation, Dalian, China, 2006, pp. 295 -- 299.
[9] Kim, E.; Lee, H.: New approaches to relaxed quadratic stability condition of fuzzy control systems. IEEE trans. Fuzzy systems 8, No. 5, 523-534 (2000)
[10] Li, C.; Wang, H.; Liao, X.: Delay-dependent robust stability of uncertain fuzzy systems with time-varying delays. IEE proc. Control theory appl. 151, 417-421 (2004)
[11] Lien, C. H.: Further results on delay-dependent robust stability of uncertain fuzzy systems with time-varying delay. Chaos solitons fractals 28, 422-427 (2006) · Zbl 1091.93022
[12] Lin, C.; Wang, Q. G.; Lee, T. H.: Improvement on observer-based H$\infty $ control for T -- S fuzzy systems. Automatica 41, 1651-1656 (2005) · Zbl 1093.93016
[13] Lin, C.; Wang, Q. G.; Lee, T. H.: Delay-dependent LMI conditions for stability and stabilization of T -- S fuzzy systems with bounded time delay. Fuzzy sets systems 157, 1229-1247 (2006) · Zbl 1090.93024
[14] H. Liu, K. He, F. Sun, Z. Sun, Analysis and synthesis of fuzzy stochastic systems via LMI approach, in: Proc. 17th IEEE Region 10 Internat. Conf. on Computers, Communications, Control and Power Engineering, Beijing, China, 2002, pp. 1700 -- 1703
[15] Liu, X.; Zhang, Q. L.: New approaches to controller designs based on fuzzy observers for T -- S fuzzy systems via LMI. Automatica 39, 1571-1582 (2003) · Zbl 1029.93042
[16] Mao, X.: Robustness of exponential stability of stochastic differential delay equations. IEEE trans. Automat. control 41, 442-447 (1996) · Zbl 0851.93074
[17] Mao, X.: Stochastic differential equations and applications. (1997) · Zbl 0892.60057
[18] Mao, X.; Koroleva, N.; Rodkina, A.: Robust stability of uncertain stochastic differential delay equations. Systems control lett. 35, 325-336 (1998) · Zbl 0909.93054
[19] Takagi, T.; Sugeno, M.: Fuzzy identification of systems and its application to modeling and control. IEEE trans. Systems man cybernet 15, No. 1, 116-132 (1985) · Zbl 0576.93021
[20] Tanaka, K.; Ikeda, T.; Wang, H. O.: Fuzzy regulators and fuzzy observers: relaxed stability conditions and LMI-based designs. IEEE trans. Fuzzy systems 6, No. 2, 250-265 (1998)
[21] Tanaka, K.; Sugeno, M.: Stability analysis and design of fuzzy control systems. Fuzzy sets systems 45, 135-156 (1992) · Zbl 0758.93042
[22] Tian, E.; Peng, C.: Delay-dependent stability analysis and synthesis of uncertain T -- S fuzzy systems with time-varying delay. Fuzzy sets systems 157, 544-559 (2006) · Zbl 1082.93031
[23] Wang, Z.; Ho, D. W. C.; Liu, X.: A note on the robust stability of uncertain stochastic fuzzy systems with time-delays. IEEE trans. Systems man cybernet A 34, No. 4, 570-576 (2004)
[24] Xu, S.; Chen, T.: Reduced-order H$\infty $ filtering for stochastic systems. IEEE trans. Signal processing 50, No. 12, 2998-3007 (2002)
[25] Xu, S.; Chen, T.: Robust H$\infty $ control for uncertain stochastic systems with state delay. IEEE trans. Automat. control 47, No. 12, 2089-2094 (2002)
[26] Xu, S.; Chen, T.: H$\infty $ output feedback control for uncertain stochastic systems with time-varying delays. Automatica 40, 2091-2098 (2004) · Zbl 1073.93022
[27] Xu, S.; Lam, J.; Mao, X.; Zou, Y.: A new LMI condition for delay-dependent robust stability of stochastic time-delay systems. Asian J. Control 7, No. 4, 419-423 (2005)
[28] Yi, Z.; Heng, P. A.: Stability of fuzzy control systems with bounded uncertain delays. IEEE trans. Fuzzy systems 10, 92-97 (2002) · Zbl 1142.93377
[29] Yuan, C.; Mao, X.: Robust stability and controllability of stochastic differential delay equations with Markovian switching. Automatica 40, No. 3, 343-354 (2004) · Zbl 1040.93069
[30] Zhou, S.; Feng, G.; Lam, J.; Xu, S.: Robust H$\infty $ control for discrete-time fuzzy systems via basis-dependent Lyapunov functions. Inform. sci. 174, No. 3 -- 4, 197-217 (2005) · Zbl 1113.93038
[31] Zhou, S.; Li, T.: Robust stabilization for delayed discrete-time fuzzy systems via basis-dependent Lyapunov -- Krasovskiĭ function. Fuzzy sets systems 151, 139-153 (2005) · Zbl 1142.93379