zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Nonlinear observer control for full-state projective synchronization in chaotic continuous-time systems. (English) Zbl 1122.93311
Summary: Projective synchronization, characterized by a scaling factor that two coupled systems synchronize proportionally, is usually observable in a class of nonlinear dynamical systems with partial-linearity. We show that, by using an observer-based control, the synchronization could be realized in a general class of chaotic systems regardless of partial-linearity. In addition, this technique overcomes some limitations in previous work, capable to achieve a full-state synchronization with a specified scaling factor, and adjust the scaling factor arbitrarily in due course of control without degrading the controllability. Feasibility of the technique is illustrated for a chaotic circuit converter and the Chen’s attractor.

93C10Nonlinear control systems
37D45Strange attractors, chaotic dynamics
Full Text: DOI
[1] Pecora, L. M.; Carrol, T. L.: Synchronization in chaotic systems. Phys. rev. Lett. 64, No. 8, 821-825 (1990) · Zbl 0938.37019
[2] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J.: Phase synchronization in driven and coupled chaotic oscillators. IEEE trans. Circ. syst. I 44, No. 10, 874-881 (1997) · Zbl 0896.60090
[3] Anishchenko, V. S.; Vadivasova, T. E.; Postnov, D. E.; Safonova, M. A.: Synchronization of chaos. Int. J. Bifurcat. chaos 2, 633-644 (1992) · Zbl 0876.34039
[4] Kocarev, L.; Parlitz, U.: Generalized synchronization, predictability, and equivalence of unidirectionally coupled dynamical systems. Phys. rev. Lett. 76, No. 11, 1816-1819 (1996)
[5] Mainieri, R.; Rehacek, J.: Projective synchronization in three-dimensional chaotic systems. Phys. rev. Lett. 82, No. 15, 3042-3045 (1999)
[6] Cao, L. Y.; Lai, Y. C.: Antiphase synchronism in chaotic systems. Phys. rev. E 58, No. 1, 382-386 (1998)
[7] Kawata, J.; Nishio, Y.; Dedieu, H.; Ushida, A.: Performance comparison of communication systems using chaos synchronization. IEICE trans. Fund. 82-A, No. 7, 1322-1328 (1999)
[8] Chee, C. Y.; Xu, D.: Secure digital communication using controlled projective synchronisation of chaos. Chaos, solitons & fractals 23, No. 3, 1063-1070 (2005) · Zbl 1068.94010
[9] Xu, D.: Control of projective synchronization in chaotic systems. Phys. rev. E 63, No. 2, 027201 (2001)
[10] Xu, D.; Li, Z.; Bishop, S. R.: Manipulating the scaling factor of projective synchronization in three-dimensional chaotic systems. Chaos 11, No. 3, 439-442 (2001) · Zbl 0996.37075
[11] Xu, D.; Chee, C. Y.: Controlling the ultimate state of projective synchronization in chaotic systems of arbitrary dimension. Phys. rev. E 66, No. 4, 046218 (2002)
[12] Rössler, O. E.: An equation for hyperchaos. Phys. lett. A 71, No. 2-3, 155-157 (1979) · Zbl 0996.37502
[13] Grassi, G.; Mascolo, S.: Nonlinear observer design to synchronize hyperchaotic systems via a scalar signal. IEEE trans. Circ. syst. I 44, No. 10, 1011-1014 (1997)
[14] Morgül, O. {}; Solak, E.: Observer based synchronization of chaotic systems. Phys. rev. E 54, No. 5, 4803 (1996)
[15] Rulkov, N. F.: Images of synchronized chaos: experiments with circuits. Chaos 6, No. 3, 262-279 (1996)
[16] Zhong, G. Q.; Tang, W. K. S.: Circuitry implementation and synchronization of Chen’s attractor. Int. J. Bifurcat. chaos 12, No. 6, 1423-1427 (2002)
[17] Matsumoto, T.; Chua, L. O.; Kobayashi, K.: Hyperchaos: laboratory experiment and numerical confirmation. IEEE trans. Circ. syst. 33, No. 11, 1143-1147 (1986)
[18] Chua, L. O.: Global unfolding of Chua’s circuit. IEICE trans. Fund. 76-A, No. 5, 704-734 (1993)
[19] Tamaševičius, A.; Čenys, A.; Mykolaitis, G.; Namajūnas, A.; Lindberg, E.: Hyperchaotic oscillator with gyrators. Electron. lett. 33, No. 7, 542-544 (1997)
[20] Fradkov, A. L.; Markov, A. Y.: Adaptive synchronization of chaotic systems based on speed gradient method and passification. IEEE trans. Circ. syst. I 44, No. 10, 905-912 (1997)
[21] Lorenz, E. N.: Deterministic nonperiodic flows. J. atmos. Sci. 20, 130-141 (1963)
[22] Paraskevopoulos, P. N.: Modern control engineering. (2002) · Zbl 1043.83039