zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Global robust stability analysis of neural networks with discrete time delays. (English) Zbl 1122.93397
Summary: Global robust convergence properties of continuous-time neural networks with discrete delays are studied. By using a Lyapunov functional, we derive a delay independent stability condition for the existence uniqueness and global robust asymptotic stability of the equilibrium point. The condition is in terms of the network parameters only and can be easily verified. It is also shown that the obtained result improves and generalizes a previously published result.

MSC:
93D09Robust stability of control systems
34K20Stability theory of functional-differential equations
37N35Dynamical systems in control
WorldCat.org
Full Text: DOI
References:
[1] Forti, M.; Tesi, A.: New conditions for global stability of neural networks with applications to linear and quadratic programming problems. IEEE trans circuits syst 42, No. 7, 354-365 (1995) · Zbl 0849.68105
[2] Wang, K.; Michel, A. N.: On the stability of family of nonlinear time varying systems. IEEE trans circuits syst 43, No. 7, 517-531 (1996)
[3] Hu, S.; Wang, J.: Absolute exponential stability of a class of continuous-time recurrent neural networks. IEEE trans neural networks 14, No. 1, 35-45 (2003)
[4] Hu, S.; Wang, J.: Global exponential stability of continuous-time interval neural networks. IEEE trans circuits syst 49, No. 9, 1334-1347 (2002)
[5] Arik, S.: Global asymptotic stability of a class of dynamical neural networks. IEEE trans circuits syst I 47, No. 4, 568-571 (2000) · Zbl 0997.90094
[6] Arik, S.; Tavsanoglu, V.: Equilibrium analysis of delayed cnns. IEEE trans circuits syst I 45, 168-171 (1998) · Zbl 0917.68223
[7] Cao, J. D.: Periodic-solutions and exponential stability in delayed cellular neural networks. Phys rev E 60, No. 3, 3244-3248 (1999)
[8] Arik, S.; Tavsanoglu, V.: On the global asymptotic stability of delayed cellular neural networks. IEEE trans circuits syst I 47, No. 5, 571-574 (2000) · Zbl 0997.90095
[9] Liao, T. -L.; Wang, F. -C.: Global stability for cellular neural networks with time delay. IEEE trans neural networks 11, 1481-1485 (2000)
[10] Takahashi, N.: A new sufficient condition for complete stability of cellular neural networks with delay. IEEE trans circuits syst I 47, 793-799 (2000) · Zbl 0964.94008
[11] Yi, Z.; Tan, K. K.: Dynamic stability conditions for Lotka-Volterra recurrent neural networks with delays. Phys rev E 66, 011910 (2002)
[12] Yi, Z.; Heng, P. A.; Leung, K. S.: Convergence analysis of delayed cellular neural networks with unbounded delay. IEEE trans circuits syst I 48, 680-687 (2001) · Zbl 0994.82068
[13] Liao, X.; Chen, G.; Sanchez, E. N.: LMI-based approach for asymptotic stability analysis of delayed neural networks. IEEE trans circuits syst I 49, 1033-1039 (2002)
[14] Gopalsamy, K.; He, X.: Delay-dependent stability in bi-directional associative memory networks. IEEE trans neural networks 5, 998-1002 (1994)
[15] Mohamad, S.: Global exponential stability in continuous-time and discrete-time delayed bidirectional neural networks. Physica D 159, 233-251 (2001) · Zbl 0984.92502
[16] Cao, J.; Wang, J.: Global asymptotic stability of a general class of recurrent neural networks with time-varying delays. IEEE trans circuits syst I 50, 34-44 (2003)
[17] Li, X. M.; Huand, L. H.; Zhu, H.: Global stability of cellular neural networks with constant and variable delays. Nonlinear anal 53, 319-333 (2003) · Zbl 1011.92006
[18] Liao, X. F.; Yu, J.: Robust stability for interval Hopfield neural networks with time delay. IEEE trans neural networks 9, 1042-1045 (1998)
[19] Liao, X. F.; Wong, K. W.; Wu, Z.; Chen, G.: Novel robust stability for interval-delayed Hopfield neural. IEEE trans circuits syst I 48, 1355-1359 (2001) · Zbl 1006.34071
[20] Cao, J.; Huang, D. S.; Qu, Y.: Global robust stability of recurrent neural networks. Chaos, solitons & fractals 23, 221-229 (2005) · Zbl 1075.68070
[21] Cao, J.; Chen, T.: Global exponentially robust stability and periodicity of delayed neural networks. Chaos, solitons & fractals 22, 1355-1359 (2004) · Zbl 1061.94552
[22] Chen, A.; Cao, J.; Huang, L.: Global robust stability of interval cellular neural networks with time varying delays. Chaos, solitons & fractals 23, 787-799 (2005) · Zbl 1101.68752