×

A note on the 3-class field tower of a cyclic cubic field. (English) Zbl 1123.11036

In this note the author proves the following theorem. Let \(K\) be a cyclic cubic number field such that exactly three rational primes ramify in \(K/Q\). Then the 3-class field tower of \(K\) is greater than 1 if and only if the class number of the genus field of \(K\) is divisible by 3. To prove this theorem, the author makes use of a result from his earlier work, Chebotarev’s monodromy theorem, and GAP-groups.

MSC:

11R29 Class numbers, class groups, discriminants
11R16 Cubic and quartic extensions
11R37 Class field theory

Software:

GAP
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] E. Benjamin, F. Lemmermeyer and C. Snyder, Real quadratic fields with abelian \(2\)-class field tower, J. Number Theory 73 (1998), no. 2, 182-194. · Zbl 0919.11073 · doi:10.1006/jnth.1998.2291
[2] R. J. Bond, Unramified abelian extensions of number fields, J. Number Theory 30 (1988), no. 1, 1-10. · Zbl 0649.12008 · doi:10.1016/0022-314X(88)90022-4
[3] H. Cohn, A classical invitation to algebraic numbers and class fields , Springer, New York, 1978. · Zbl 0395.12001
[4] G. Cornell and M. Rosen, The class group of an absolutely abelian \(l\)-extension, Illinois J. Math. 32 (1988), no. 3, 453-461. · Zbl 0654.12006
[5] The GAP Group, GAP-Groups, Algorithms, and Programming, Version 4.4; 2005.
http://www.gap-system.org
[6] E. S. Golod and I. R. Šafarevič, On the class field tower, Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 261-272. · Zbl 0136.02602
[7] F. Hajir, On the class numbers of Hilbert class fields, Pacific J. Math. 1997 , Olga Taussky-Todd memorial issue, 177-187. · Zbl 0923.11155 · doi:10.2140/pjm.1997.181.177
[8] A. Nomura, On embedding problems with restricted ramifications, Arch. Math. (Basel) 73 (1999), no. 3, 199-204. · Zbl 1037.11070 · doi:10.1007/s000130050028
[9] A. Nomura, On unramified \(3\)-extensions over cyclic cubic fields, Pacific J. Math. (to appear). · Zbl 1221.12011 · doi:10.2140/pjm.2007.230.167
[10] O. Schreier, Über die Erweiterung von Gruppen. II, Abh. Math. Sem. Univ. Hamburg 4 (1926), 321-346. · JFM 52.0113.04
[11] E. Yoshida, On the 3-class field tower of some biquadratic fields, Acta Arith. 107 (2003), no. 4, 327-336. · Zbl 1064.11074 · doi:10.4064/aa107-4-2
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.