zbMATH — the first resource for mathematics

Cohomology of tilting modules over quantum groups and \(t\)-structures on derived categories of coherent sheaves. (English) Zbl 1123.17002
Let \(G\) be a complex semisimple group of adjoint type with Lie algebra \(\mathfrak{g}\) and let \(q\) be a primitive root of unity of odd order \(l\) greater than the Coxeter number of \(\mathfrak{g}\) and prime to \(3\) if \(\mathfrak{g}\) has a factor of type \(G_2\). Then V. Ginzburg and S. Kumar [Duke Math. J. 69, No. 1, 179–198 (1993; Zbl 0774.17013)] proved that the cohomology algebra of the small quantum group \(u_q\) corresponding to \(\mathfrak{g}\) is isomorphic to the coordinate algebra \(\mathcal{O}(\mathcal{N})\) of the nilpotent cone \(\mathcal{N}\) of \(\mathfrak{g}\). Note that every irreducible object of the category \(\mathcal{P}Coh\) of \(G\)-equivariant coherent sheaves on \(\mathcal{N}\) with respect to the middle perversity is determined by a certain pair \((O,\mathcal{L})\) where \(O\) is some \(G\)-orbit in \(\mathcal{N}\) and \(\mathcal{L}\) is some irreducible \(G\)-equivariant vector bundle on \(O\). The main result of the paper under review is a description of the \(\mathcal{O}(\mathcal{N})\)-module \(H^\bullet(u_q,T)\) for a tilting object \(T\) in the principal block \({\mathfrak U}_q \mathrm{-mod}^0\) of the category of finite-dimensional graded modules over Lusztig’s quantum group \({\mathfrak U}_q\) which goes as follows. If \(T\) is an indecomposable tilting module of \({\mathfrak U}_q\mathrm{-mod}^0\), then either \(H^\bullet(u_q,T)=0\) or \(H^\bullet (u_q,T)\) is isomorphic to the total cohomology of the irreducible object of \(\mathcal{P} Coh\) corresponding to the pair \((O_T,\mathcal{L}_T)\) uniquely determined by \(T\). As a consequence the author proves a sheaf-theoretic version of a conjecture of J. E. Humphreys [in AMS/IP Stud. Adv. Math. 4, 69–80 (1997; Zbl 0919.17013)] (verified by V. V. Ostrik [Funct. Anal. Appl. 32, No. 4, 237–246 (1998; Zbl 0981.17010)] for type \(A\)) which states that the support of the cohomology of an indecomposable tilting module of \({\mathfrak U}_q\mathrm{-mod}^0\) as a coherent sheaf on \(\mathcal{N}\) is the closure of the nilpotent orbit corresponding to the two-sided cell in the affine Weyl group given via Lusztig’s bijection.

17B37 Quantum groups (quantized enveloping algebras) and related deformations
14A22 Noncommutative algebraic geometry
16S38 Rings arising from noncommutative algebraic geometry
18E30 Derived categories, triangulated categories (MSC2010)
18F20 Presheaves and sheaves, stacks, descent conditions (category-theoretic aspects)
14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
Full Text: DOI arXiv
[1] Andersen, H.-H., Polo, P., Wen, K.X.: Representations of quantum algebras. Invent. Math. 104, 1–59 (1991) · Zbl 0724.17012
[2] Arkhipov, S., Bezrukavnikov, R.: Perverse sheaves on affine flags and Langlands dual group. Electronic preprint math.RT/0201073, to appear in Isr. J. Math. · Zbl 1214.14011
[3] Arkhipov, S., Bezrukavnikov, R., Ginzburg, V.: Quantum Groups, the loop Grassmannian, and the Springer resolution. J. Am. Math. Soc. 17, 595–678 (2004) · Zbl 1061.17013
[4] Arkhipov, S., Gaitsgory, D.: Another realization of the category of modules over the small quantum group. Adv. Math. 173, 114–143 (2003) · Zbl 1025.17004
[5] Beilinson, A., Bernstein, J., Deligne, P.: Faisceaux pervers. Astérisque 100, 5–171 (1982) · Zbl 0536.14011
[6] Beilinson, A., Bezrukavnikov, R., Mirković, I.: Tilting exersices. Moscow Math. J. 4, 547–557 (2004) · Zbl 1075.14015
[7] Beilinson, A., Ginzburg, V.: Wall-crossing functors and D-modules. Represent. Theory 3, 1–31 (1999) · Zbl 0910.05068
[8] Beilinson, A., Ginzburg, V., Soergel, W.: Koszul duality patterns in representation theory. J. Am. Math. Soc. 9, 473–527 (1996) · Zbl 0864.17006
[9] Bezrukavnikov, R.: Perverse sheaves on affine flags and nilpotent cone of the Langlands dual group. Electronic preprint, math.RT/0201256, to appear in Isr. J. Math.
[10] Bezrukavnikov, R.: Perverse coherent sheaves (after Deligne). Electronic preprint math.AG/0005152
[11] Bezrukavnikov, R.: Quasi-exceptional sets and equivariant coherent sheaves on the nilpotent cone. Represent. Theory 7, 1–18 (2003) · Zbl 1065.20055
[12] Bezrukavnikov, R., Mirković, I., Rumynin, D.: Localization of modules for a semisimple Lie algebra in prime characteristic. Electronic preprint, math.RT/0205144, to appear in Ann. Math. · Zbl 1220.17009
[13] Bondal, A.I., Kapranov, M.M.: Representable functors, Serre functors, and reconstructions. Izv. Akad. Nauk SSSR Ser. Mat. 53, 1183–1205, 1337 (1989); translation in Math. USSR Izv. 35, 519–541 (1990) · Zbl 0703.14011
[14] Cline, E., Parshall, B., Scott, L.: Abstract Kazhdan-Lusztig theories. Tohoku Math. J., II. Ser. 45, 511–534 (1993) · Zbl 0801.20013
[15] Demazure, M.: A very simple proof of Bott’s theorem. Invent. Math. 33, 271–272 (1976) · Zbl 0383.14017
[16] Frenkel, E., Gaitsgory, D.: Local geometric Langlands correspondence and affine Kac-Moody algebras. Preprint math.RT/0508382, 152 pp. · Zbl 1184.17011
[17] Gaitsgory, D.: Construction of central elements in the affine Hecke algebra via nearby cycles. Invent. Math. 144, 253–280 (2001) · Zbl 1072.14055
[18] Ginzburg, V., Kumar, S.: Cohomology of quantum groups at roots of unity. Duke Math. J. 69, 179–198 (1993) · Zbl 0774.17013
[19] Goertz, U., Haines, T.J.: The Jordan-Hölder series for nearby cycles on some Shimura varieties and affine flag varieties. Preprint math.AG/0402143, 71 pp. · Zbl 1157.14013
[20] Humphreys, J.: Comparing modular representations of semisimple groups and their Lie algebras. Modular interfaces (Riverside, CA 1995), pp. 69–80, AMS/IP Stud. Adv. Math., vol. 4. Providence, RI: Am. Math. Soc. 1997 · Zbl 0919.17013
[21] Lusztig, G.: Introduction to Quantum Groups. Progress in Mathematics, vol. 110. Boston, MA: Birkhäuser 1993 · Zbl 0788.17010
[22] Lusztig, G.: Cells in affine Weyl groups, IV. J. Fac. Sci. Univ. Tokyo, Sect. IA, Math. 36, 297–328 (1989) · Zbl 0688.20020
[23] Ostrik, V.: On the equivariant K-theory of the nilpotent cone. Represent. Theory 4, 296–305 (2000) · Zbl 0986.20045
[24] Ostrik, V.: Cohomological supports for quantum groups (russian). Funkts. Anal. Prilozh. 32, 22–34, 95 (1998); translation in Funct. Anal. Appl. 32, 237–246 (1999)
[25] Ringel, C.M.: The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences. Math. Z. 208, 209–223 (1991) · Zbl 0725.16011
[26] Soergel, W.: Kategorie \(\mathcal{O}\) , perverse Garben und Moduln über den Koinvarianten zur Weylgruppe. J. Am. Math. Soc. 3, 421–445 (1990) · Zbl 0747.17008
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.