Observer-based control for full-state projective synchronization of a general class of chaotic maps in any dimension. (English) Zbl 1123.37326

Summary: An observer-based control approach is proposed for generating and manipulating projective synchronization of a general class of chaotic maps in any dimension. The proposed approach overcomes some limitations in extent work, capable to execute the control for chaotic systems without restriction of partial-linearity, achieve a full-state synchronization and manipulate the outcome of the synchronization by directing the scaling factor. The feasibility of the control is illustrated on a generalized Hénon map and a second-order map. We also show that the control scheme is robust in presence of noise.


37M10 Time series analysis of dynamical systems
37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
37N35 Dynamical systems in control
Full Text: DOI


[1] Pecora, L. M.; Carroll, T. L., Phys. Rev. Lett., 64, 821 (1990) · Zbl 0938.37019
[2] Yang, X. S.; Chen, G., Chaos Solitons Fractals, 13, 1303 (2002) · Zbl 1006.93580
[3] Itoh, M.; Murakami, H., IEICE Trans. Fundamentals, E78-A, 285 (1995)
[4] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J., IEEE Trans. Circuits Systems I, 44, 874 (1997)
[5] Cao, L. Y.; Lai, Y. C., Phys. Rev. E, 58, 382 (1998)
[6] Mainieri, R.; Rehacek, J., Phys. Rev. Lett., 82, 3042 (1999)
[7] Xu, D., Phys. Rev. E, 63, 27201 (2001)
[8] Xu, D.; Li, Z.; Bishop, S. R., Chaos, 11, 439 (2001) · Zbl 0996.37075
[9] Xu, D.; Chee, C. Y., Phys. Rev. E, 66, 046218 (2002)
[10] Xu, D.; Chee, C. Y.; Li, C., Chaos Solitons Fractals, 22, 175 (2004) · Zbl 1060.93535
[11] Chee, C. Y.; Xu, D., Phys. Lett. A, 318, 112 (2003) · Zbl 1098.37512
[12] Chen, G.; Dong, X., From Chaos to Order: Methodologies, Perspectives, and Applications (1998), World Scientific: World Scientific Singapore · Zbl 0908.93005
[13] Grassi, G.; Miller, D. A., IEEE Trans. Circuits Systems I, 49, 373 (2002)
[14] Guckenheimer, J.; Holmes, P. J., Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields (1983), Springer-Verlag: Springer-Verlag New York · Zbl 0515.34001
[15] Rodriguez-Vasquez, A.; Huertas, J. L.; Rueda, A.; Perez-Verdu, B.; Chua, L. O., Proc. IEEE, 75, 1090 (1987)
[16] Konishi, K.; Kokame, H., Phys. Lett. A, 248, 359 (1998)
[17] Itoh, M.; Murakami, H., IEICE Trans. Fundamentals, E77-A, 2092 (1994)
[18] Grassi, G.; Mascolo, S., IEEE Trans. Circuits Systems I, 44, 1011 (1997)
[19] Fortmann, T. E.; Hitz, K. L., An Introduction to Linear Control Systems (1977), Marcel Dekker: Marcel Dekker New York · Zbl 0429.93001
[20] De Angeli, X.; Genesio, R.; Tesi, A., IEEE Trans. Circuits Systems I, 42, 54 (1995)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.