[1] |
Benko, D.: Approximation by weighted polynomials. J. approx. Theory 120, 153-182 (2003) · Zbl 1029.41002 |

[2] |
Benko, D.: The support of the equilibrium measure. Acta sci. Math. 70, 153-182 (2004) · Zbl 1059.31002 |

[3] |
D. Benko, A. Kroó, A Weierstrass-type theorem for homogeneous polynomials, manuscript |

[4] |
Beurling, A.; Ahlfors, L.: The boundary correspondence under quasiconformal mappings. Acta math. 96, 125-142 (1956) · Zbl 0072.29602 |

[5] |
Capogna, L.; Kenig, C. E.; Lanzani, L.: Harmonic measure. University lecture series 35 (2005) · Zbl 1074.31001 |

[6] |
Von Golitschek, M.: Approximation by incomplete polynomials. J. approx. Theory 28, 155-160 (1980) |

[7] |
He, X.; Li, X.: Uniform convergence of polynomials associated with varying weights. Rocky mountain J. Math. 21, 281-300 (1991) · Zbl 0749.41011 |

[8] |
Ivanov, K. G.; Totik, V.: Fast decreasing polynomials. Constr. approx. 6, 1-20 (1990) · Zbl 0682.41014 |

[9] |
Katznelson, Y.: An introduction to harmonic analysis. (2004) · Zbl 1055.43001 |

[10] |
Kroó, A.; Szabados, J.: On density of homogeneous polynomials on convex and star-like surfaces in rd. East J. Approx. 11, No. 4, 381-404 (2005) · Zbl 1141.41004 |

[11] |
Kuijlaars, A. B. J.: A note on weighted polynomial approximation with varying weights. J. approx. Theory 87, 112-115 (1996) · Zbl 0862.41005 |

[12] |
Kuijlaars, A. B.: The role of the endpoint in weighted polynomial approximation with varying weights. Constr. approx. 12, 287-301 (1996) · Zbl 0864.41006 |

[13] |
Kuijlaars, A. B. J.: Weighted approximation with varying weights: the case of power-type singularity. J. math. Anal. appl. 204, 409-418 (1996) · Zbl 0962.41002 |

[14] |
Lorentz, G. G.: Approximation of functions. (1966) · Zbl 0153.38901 |

[15] |
Lubinsky, D. S.; Saff, E. B.: Uniform and mean approximation by certain weighted polynomials, with applications. Constr. approx. 4, 21-64 (1988) · Zbl 0646.41003 |

[16] |
Mastroianni, G.; Totik, V.: Polynomial inequalities with doubling and A$\infty $weights. Constr. approx. 16, 37-71 (2000) · Zbl 0956.42001 |

[17] |
Mhaskar, H. N.; Saff, E. B.: A Weierstrass-type theorem for certain weighted polynomials. Approximation theory and applications, 115-123 (1985) · Zbl 0578.41007 |

[18] |
Pritsker, I. E.: Weighted energy problem on the unit circle. Constr. approx. 23, 103-120 (2005) · Zbl 1087.31003 |

[19] |
Ransford, T.: Potential theory in the complex plane. (1995) · Zbl 0828.31001 |

[20] |
Riesz, F.; Sz.-Nagy, B.: Functional analysis. (1955) · Zbl 0070.10902 |

[21] |
Saff, E. B.; Totik, V.: Logarithmic potentials with external fields. Grundlehren math. Wiss. 316 (1997) · Zbl 0881.31001 |

[22] |
Saff, E. B.; Varga, R. S.: Uniform approximation by incomplete polynomials. Int. J. Math. sci. 1, 407-420 (1978) · Zbl 0421.41006 |

[23] |
Shnol, È.È.: Approximation of functions by homogeneous polynomials and series in homogeneous polynomials. Akad. nauk SSSR inst. Prikl. mat. Preprint 120 (1978) |

[24] |
Shnol, È.È.: Approximation of curves by level lines of homogeneous polynomials, and series of homogeneous polynomials. Mat. sb. 182, 421-430 (1991) |

[25] |
Simeonov, P.: Weighted polynomial approximation with weights with logarithmic singularity in the extremal measure. Acta math. Hungar. 82, 265-296 (1999) · Zbl 0934.41005 |

[26] |
Stein, E. M.: Harmonic analysis. (1993) · Zbl 0821.42001 |

[27] |
Stone, M. H.: The generalized Weierstrass approximation theorem. Math. mag. 21, 167-184 (1948) |

[28] |
Totik, V.: Weighted approximation with varying weights. Lecture notes in math. 1569 (1995) |

[29] |
Totik, V.: Weighted polynomial approximation for weights with slowly varying extremal density. J. approx. Theory 99, 258-288 (1999) · Zbl 0936.41008 |

[30] |
Totik, V.: Weighted polynomial approximation for convex fields. Constr. approx. 16, 261-281 (2000) · Zbl 0955.41005 |

[31] |
P.P. Varjú, Approximation by homogeneous polynomials, manuscript |

[32] |
Walsh, J. L.: Interpolation and approximation by rational functions in the complex domain. Colloq. publ. 20 (1960) · Zbl 0106.28104 |