\(W\)-\(G\)-\(F\)-\(KKM\) mapping, intersection theorems and minimax inequalities in \(FC\)-space. (English) Zbl 1123.49002

For multimaps defined on finitely continuous spaces (\(FC\)-spaces) [see X. P. Ding, J. Math. Anal. Appl. 305, No. 1, 29–42 (2005; Zbl 1120.91001)], the authors present some \(KKM\) type and intersection theorems. Some applications to minimax inequalities are given.


49J35 Existence of solutions for minimax problems
47J05 Equations involving nonlinear operators (general)
47H04 Set-valued operators
52A01 Axiomatic and generalized convexity
54H25 Fixed-point and coincidence theorems (topological aspects)


Zbl 1120.91001
Full Text: DOI


[1] Knaster, B.; Kuratowski, K.; Mazurkiewicz, S., Ein Beweis des Fixpunksatzes Für \(n\)-dimensionale Simplexe, Fund. Math., 14, 132-137 (1929) · JFM 55.0972.01
[2] Hovath, C., Some results on multivalued mappings and inequalities without convexity, (Lin, B. L.; Simons, S., Nonlinear and Convex Analysis. Nonlinear and Convex Analysis, Lecture Notes in Pure and Appl. Math., vol. 106 (1987), Dekker: Dekker New York), 99-106
[3] Ding, X. P., Coincidence theorems and equilibria of generalized games, Indian J. Pure Appl. Math., 27, 1057-1071 (1996) · Zbl 0870.54047
[4] Tan, K. K., \(G- KKM\) theorem, minimax inequalities and saddle points, Nonlinear Anal., 30, 4151-4160 (1997) · Zbl 0953.49009
[5] Chang, T. H.; Yen, C. L., KKM property and fixed point theorem, J. Math. Anal. Appl., 203, 224-235 (1996) · Zbl 0883.47067
[6] Lin, L. J.; Ko, C. J.; Park, S., Coincidence theorems for set-valued maps with \(G- KKM\) property on generalized convex space, Discuss. Math. Differ. Incl., 18, 69-85 (1998) · Zbl 0941.47044
[7] Balaj, M., Weakly \(G- KKM\) mappings, \(G- KKM\) properties and minimax inequalities, J. Math. Anal. Appl., 294, 237-245 (2004) · Zbl 1053.54028
[8] Park, S., Generalizations of Ky Fan’s matching theorems and their applications, J. Math. Anal. Appl., 141, 164-176 (1989) · Zbl 0681.47028
[9] Park, S., Foundations of the KKM theory via coincidence of composites of upper semicontinuous maps, J. Korean Math. Soc., 31, 493-520 (1994) · Zbl 0829.49002
[10] Verma, R. U., Some results on \(R- KKM\) mappings and \(R- KKM\) selections and their applications, J. Math. Anal. Appl., 232, 428-433 (1999) · Zbl 0946.47033
[11] Ding, X. P., Maximal elements theorems in product FC-space and generalized games, J. Math. Anal. Appl., 305, 29-42 (2005) · Zbl 1120.91001
[15] Zhang, Q. B.; Cheng, C. Z., Some fixed-point theorems and minimax inequalities in FC-space, J. Math. Anal. Appl., 328, 2, 1369-1377 (2007) · Zbl 1111.54035
[16] Ding, X. P., Weak Pareto equilibria for generalized constrained multiobjective games in locally FC-spaces, Nonlinear Anal., 65, 538-545 (2006) · Zbl 1186.90101
[18] Tan, K. K., \(G- KKM\) theorem, minimax inequalities and saddle points, Nonlinear Anal., 30, 4151-4160 (1997) · Zbl 0953.49009
[19] Fan, Ky, A minimax inequality and applications, (Shisha, O., Inequalities, vol. III (1972), Academic Press: Academic Press San Diego), 103-113 · Zbl 0302.49019
[20] Ha, C. W., On a minimax inequality of Ky Fan, Proc. Amer. Math. Soc., 99, 680-682 (1987) · Zbl 0633.47037
[21] Liu, F. C., On a form of KKM principle and SupInfSup inequalities of Von Neumann and of Ky Fan type, J. Math. Anal. Appl., 155, 420-436 (1991) · Zbl 0734.47030
[22] Kim, J., KKM theorems and minimax inequalities in \(G\)-convex spaces, Nonlinear Anal. Forum, 6, 135-142 (2001) · Zbl 0993.54041
[23] Aubin, J. P.; Eckeland, J., Applied Nonlinear Analysis (1984), Wiley: Wiley New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.