Lubotzky, Alexander; Samuels, Beth; Vishne, Uzi Division algebras and noncommensurable isospectral manifolds. (English) Zbl 1123.58020 Duke Math. J. 135, No. 2, 361-379 (2006). Author’s abstract: A. W. Reid showed in [Duke Math. J. 65, No. 2, 215–228 (1992; Zbl 0776.58040)] that if \(\Gamma_1\) and \(\Gamma_2\) are arithmetic lattices in \(G=\text{PGL}_2(\mathbb R)\) or in \(G=\text{PGL}_2(\mathbb C)\) which give rise to isospectral manifolds, then \(\Gamma_1\) and \(\Gamma_2\) are commensurable (after conjugation). We show that for \(d\geq 3\) and \( \mathcal {S}=\text{PGL}_d(\mathbb R)/\text{PO}_d(\mathbb R)\) or \( \mathcal {S}=\text{PGL}_d(\mathbb C)/\text{PO}_d(\mathbb C)\), the situation is quite different; there are arbitrarily large finite families of isospectral noncommensurable compact manifolds covered by \(\mathcal S\). The constructions are based on the arithmetic groups obtained from divisions algebras with the same ramification points but different invariants. Reviewer: Witold Mozgawa (Lublin) Cited in 10 Documents MSC: 58J53 Isospectrality 11F70 Representation-theoretic methods; automorphic representations over local and global fields 17A35 Nonassociative division algebras Keywords:isospectral; virtually isomorphic; arithmetic lattice; noncommensurability; division algebra Citations:Zbl 0776.58040 × Cite Format Result Cite Review PDF Full Text: DOI arXiv References: [1] E. Artin and J. Tate, Class Field Theory , W. A. Benjamin, New York, 1968. · Zbl 0176.33504 [2] R. Brooks, “Isospectral graphs and isospectral surfaces” in Séminaire de Théorie Spectrale et Géométrie, No. 15, Année 1996–1997. (Grenoble) , Sémin. Théor. Spectr. Géom. 15 , Univ. Grenoble I, Saint-Martin-d’Hères, 1997, 105–113. · Zbl 0910.05042 [3] -, “The Sunada method” in Tel Aviv Topology Conference: Rothenberg Festschrift (1998) , Contemp. Math. 231 , Amer. Math. Soc., Providence, 1999, 25–35. · Zbl 0935.58018 [4] D. Bump, “Spectral theory and the trace formula” in An Introduction to the Langlands Program (Jerusalem, 2001) , Birkhaüser, Boston, 2003, 153–196. · Zbl 1111.11305 [5] S. Demir, Isospectral graphs and the representation-theoretical spectrum , European J. Combinatorics 26 (2005), 167–172. · Zbl 1059.05076 · doi:10.1016/j.ejc.2004.04.001 [6] J. A. Dieudonné, La géométrie des groupes classiques , 3rd ed., Ergeb. Math. Grenzgeb. 5 , Springer, Berlin, 1971. · Zbl 0221.20056 [7] S. Gelbart and H. Jacquet, “Forms of \(\GL[](2)\) from the analytic point of view” in Automorphic Forms, Representations and \(L\)-functions (Corvallis, Ore., 1977), Proc. Sympos. Pure Math. 33 , Amer. Math. Soc., Providence, 1979, 213–251. · Zbl 0409.22013 [8] D. Goldfeld, A. Lubotzky, N. Nikolov, and L. Pyber, Counting primes, groups, and manifolds , Proc. Natl. Acad. Sci. USA 101 (2004), no. 37, 13428–13430. · Zbl 1139.11324 · doi:10.1073/pnas.0404571101 [9] C. S. Gordon, “Survey of isospectral manifolds” in Handbook of Differential Geometry, Vol. I , North-Holland, Amsterdam, 2000, 747–778. · Zbl 0959.58039 · doi:10.1016/S1874-5741(00)80009-6 [10] C. S. Gordon, D. Webb, and S. Wolpert, Isospectral plane domains and surfaces via Riemannian orbifolds , Invent. Math. 110 (1992), 1–22. · Zbl 0778.58068 · doi:10.1007/BF01231320 [11] M. Harris and R. Taylor, The Geometry and Cohomology of Simple Shimura Varieties , Ann. of Math. Stud. 151 , Princeton Univ. Press, Princeton, 2001. · Zbl 1036.11027 [12] S. Helgason, Differential Geometry and Symmetric Spaces , Pure Appl. Math. 12 , Academic Press, New York, 1962. · Zbl 0111.18101 [13] N. Jacobson, Structure of Rings , Amer. Math. Soc. Colloq. Publ. 37 , Amer. Math. Soc., Providence, 1956. · Zbl 0073.02002 [14] M. Kac, Can one hear the shape of a drum? Amer. Math. Monthly 73 (1966), 1–23. · Zbl 0139.05603 · doi:10.2307/2313748 [15] A. Lubotzky, B. Samuels, and U. Vishne, Ramanujan complexes of type \(\skew4\tildeA_d\) , Israel J. Math. 149 (2005), 267–299. · Zbl 1087.05036 · doi:10.1007/BF02772543 [16] -, Isospectral Cayley graphs of some finite simple groups , Duke Math. J. 135 (2006), 381–393. · Zbl 1110.05044 · doi:10.1215/S0012-7094-06-13526-3 [17] H. Pesce, Quelques applications de la théorie des représentations en géométrie spectrale , Rend. Mat. Appl. (7) 18 (1998), 1–63. · Zbl 0923.58056 [18] R. S. Pierce, Associative Algebras , Grad. Texts in Math. 88 , Springer, New York, 1982. [19] V. Platonov and A. Rapinchuk, Algebraic Groups and Number Theory , Pure and Appl. Math. 139 , Academic Press, Boston, 1994. · Zbl 0841.20046 [20] G. Prasad and M. S. Raghunathan, Topological central extensions of \(\SL[1](D)\) , Invent. Math. 92 (1988), 645–689. · Zbl 0701.20024 · doi:10.1007/BF01393751 [21] A. W. Reid, Isospectrality and commensurability of arithmetic hyperbolic \(2\)- and \(3\)-manifolds , Duke Math. J. 65 (1992), 215–228. · Zbl 0776.58040 · doi:10.1215/S0012-7094-92-06508-2 [22] R. J. Spatzier, On isospectral locally symmetric spaces and a theorem of von Neumann , Duke Math. J. 59 (1989), 289–294.; Correction , Duke Math. J. 60 (1990), 561. \(\!\); Mathematical Reviews (MathSciNet): · Zbl 0694.22007 · doi:10.1215/S0012-7094-89-05910-3 [23] T. Sunada, Riemannian coverings and isospectral manifolds , Ann. of Math. (2) 121 (1985), 169–186. JSTOR: · Zbl 0585.58047 · doi:10.2307/1971195 [24] J. Tits, Buildings of Spherical Type and Finite BN-Pairs , Lecture Notes in Math. 386 , Springer, Berlin, 1974. · Zbl 0295.20047 [25] M.-F. VignéRas, Variétés riemanniennes isospectrales et non isométriques , Ann. of Math. (2) 112 (1980), 21–32. JSTOR: · Zbl 0445.53026 · doi:10.2307/1971319 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.