×

Constructive Markov chains indexed by \(\mathbb Z\). (Chaînes de Markov constructives indexées par \(\mathbb Z\).) (French) Zbl 1123.60060

The authors are concerned with general state space Markov processes \((X_{n})_{n\in \mathbb{Z}}\), governed by recurrence relations of the form \(X_{n+1}=f_{n}( X_{n},V_{n+1}) \), where \( (V_{n})_{n\in \mathbb{Z}}\) is a doubly infinite sequence of i.i.d. random variables such that \(V_{n+1}\) is independent of the sequence \(((X_{k},V_{k}))_{k\leq n}\). Three cases are considered: the general one just described, the homogeneous case \(f_{n}=f\), \(n\in \mathbb{Z}\), for a countable state space, and the homogeneous case for a finite state space. In the second case, the authors give a necessary and sufficient condition under which the sequence \((V_{n})_{n\in \mathbb{Z}}\) fully determines the process \((X_{n})_{n\in \mathbb{Z}}\). Moreover, in the third case, they describe the missing information when this does not happen. A result of M. Rosenblatt [J. Math. Mech. 8, 665–681 (1959; Zbl 0092.33601)] is generalized and improved.

MSC:

60J05 Discrete-time Markov processes on general state spaces
60J10 Markov chains (discrete-time Markov processes on discrete state spaces)

Citations:

Zbl 0092.33601

References:

[1] Aldous, D. J. and Bandyopadhyay, A. (2005). A survey of max-type recursive distributional equations. Ann. Appl. Probab. 15 1047–1110. · Zbl 1105.60012 · doi:10.1214/105051605000000142
[2] Brossard, J. and Leuridan, C. (2006). Perte d’information dans les transformations du jeu de pile ou face. Ann. Probab. 34 1550–1588. · Zbl 1116.60035 · doi:10.1214/009117906000000124
[3] Emery, M. and Schachermayer, W. (2001). On Vershik’s standardness criterion and Tsirel’son’s notion of cosiness. Séminaire de Probabilités XXXV . Lecture Notes in Math. 1755 265–305. Springer, Berlin. · Zbl 1001.60039
[4] Heyer, H. (1977). Probability Measures on Locally Compact Groups . Springer, Berlin. · Zbl 0376.60002
[5] Kallenberg, O. (1997). Foundations of Modern Probability . Springer, New York. · Zbl 0892.60001 · doi:10.1007/b98838
[6] Laurent, S. (2004). Filtrations à temps discret négatif. Thèse de l’Université Louis Pasteur (Strasbourg).
[7] Masani, P. (1966). Wiener’s contribution to generalized harmonic analysis. Part II. Prediction theory and filter theory. Bull. Amer. Math. Soc. 72 73–125. · Zbl 0144.19402 · doi:10.1090/S0002-9904-1966-11470-2
[8] Mukherjea, A. and Tserpes, N. A. (1976). Measures on Topological Semigroups . Springer, Berlin. · Zbl 0342.43001 · doi:10.1007/BFb0079839
[9] Propp, J. G. and Wilson, D. B. (1996). Exact sampling with coupled Markov chains and applications to statistical mechanics. Random Structures Algorithms 9 223–252. · Zbl 0859.60067 · doi:10.1002/(SICI)1098-2418(199608/09)9:1/2<223::AID-RSA14>3.0.CO;2-O
[10] Revuz, D. (1975). Markov Chains . North-Holland, Amsterdam. · Zbl 0332.60045
[11] Rosenblatt, M. (1959). Stationary processes as shifts of functions of independent random variables. J. Math. Mech. 8 665–681. · Zbl 0092.33601
[12] von Weizsäcker, H. (1983). Exchanging the order of taking suprema and countable intersections of \(\sigma\)-algebras. Ann. Inst. H. Poincaré Probab. Statist. 19 91–100. · Zbl 0509.60002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.