zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Impulsive control of a financial model. (English) Zbl 1123.91325
Summary: In this Letter, several new theorems on the stability of impulsive control systems are presented. These theorem are then used to find the conditions under which an advertising strategy can be asymptotically control to the equilibrium point by using impulsive control. Given the parameters of the financial model and the impulsive control law, an estimation of the upper bound of the impulse interval is given, i.e., number of advert can been decreased (i.e., can decrease cost) for to obtain the equivalent advertising effect. The result is illustrated to be efficient through a numerical example.

91B28Finance etc. (MSC2000)
93C99Control systems, guided systems
Full Text: DOI
[1] Amritkar, R. E.; Gupta, N.: Phys. rev. E. 47, 3889 (1993)
[2] Akingele, O.: Nonlin. anal.. 39, 247 (2000)
[3] Bainov, D.; Kolev, D.; Motreanu, D.: Panam. math. J.. 11, No. 2, 81 (2001)
[4] Bainov, D.; Kolev, D.; Nakagawa, K.: Commun. appl. Anal.. 7, No. 2, 281 (2003)
[5] Bainov, D.; Kolev, D.; Nakagawa, K.: Commun. appl. Anal.. 7, No. 3, 359 (2003)
[6] Chen, G.; Dong, X.: Int. J. Bifur. chaos. 3, 1363 (1993)
[7] Chua, L. O.; Yang, T.; Zhong, G. Q.; Wu, C. W.: Int. J. Bifur. chaos. 6, 189 (1996)
[8] Huller, E.: J. econom. Dynamics control. 6, 333 (1983)
[9] Hunt, E. R.; Johnson, G.: IEEE spectrum. 32 (1993)
[10] Lakshmikantham, V.; Bainov, D.; Simeonov, P. S.: Theory of impulsive differential equations. (1989) · Zbl 0719.34002
[11] Li, Z. G.; Wen, C. Y.; Soh, Y. C.: IEEE trans. Automatic control. 46, 894 (2001)
[12] Li, Z. G.; Wen, C. Y.; Soh, Y. C.; Xie, W. X.: IEEE trans. Circuits systems I. 48, 1351 (2001)
[13] Ott, E.; Grebogi, C.; Yorke, J. A.: Phys. rev. Lett.. 64, 1196 (1990)
[14] Peng, B.; Petrov, V.; Showalter, K.: Phys. chem.. 95, 4957 (1991)
[15] Pyragas, K.: Phys. lett. A. 170, 421 (1992)
[16] Samoilenko, A. M.; Perestyuk, N. A.: Impulsive differential equations. (1995) · Zbl 0837.34003
[17] Schweizer, J.; Kennedy, M. P.: Phys. rev. E. 52, 4865 (1995)
[18] Stojanovski, T.; Kocarev, L.; Parlitz, U.: Phys. rev. E. 43, 782 (1996)
[19] Sun, J. T.; Zhang, Y. P.; Wu, Q. D.: Phys. lett. A. 298, 153 (2002)
[20] Sun, J. T.; Zhang, Y. P.; Wang, L.; Wu, Q. D.: Phys. lett. A. 304, 130 (2002)
[21] Sun, J. T.; Zhang, Y. P.; Wu, Q. D.: IEEE trans. Automatic control. 48, 829 (2003)
[22] Sun, J. T.; Zhang, Y. P.: J. comput. Appl. math.. 157, 235 (2003)
[23] Sun, J. T.; Zhang, Y. P.; Qiao, F.; Wu, Q. D.: Chaos solitons fractals. 19, No. 5, 1049 (2004)
[24] Sun, J. T.: Math. comput. Simulation. 64, No. 6, 669 (2004)
[25] Wu, C. W.; Yang, T.; Chua, L. O.: Int. J. Bifur. chaos. 6, 455 (1996)
[26] Xie, W. X.; Wen, C. Y.; Li, Z. G.: Phys. lett. A. 275, 67 (2000)
[27] Yang, T.; Yang, L. B.; Yang, C. M.: Phys. lett. A. 226, 349 (1997)
[28] Yang, T.; Chua, L. O.: Int. J. Bifur. chaos. 7, 645 (1997)
[29] Yang, T.; Yang, L. B.; Yang, C. M.: Physica D. 110, 18 (1997) · Zbl 0883.35076
[30] Yang, T.; Chua, L. O.: IEEE trans. Circuits systems I. 44, 976 (1997)
[31] Yang, T.: IEEE trans. Automatic control. 44, 1081 (1999)
[32] Yang, T.: Impulsive systems and control: theory and applications. (2001)