How predator functional responses and Allee effects in prey affect the paradox of enrichment and population collapses. (English) Zbl 1123.92034

Summary: In Rosenzweig-MacArthur models [see M. L. Rosenzweig, Science 171, 385–387 (1971)] of predator-prey dynamics, Allee effects in prey usually destabilize interior equilibria and can suppress or enhance limit cycles typical of the paradox of enrichment. We re-evaluate these conclusions through a complete classification of a wide range of Allee effects in prey and predator’s functional response shapes. We show that abrupt and deterministic system collapses not preceded by fluctuating predator-prey dynamics occur for sufficiently steep type III functional responses and strong Allee effects (with unstable lower equilibrium in prey dynamics). This phenomenon arises as type III functional responses greatly reduce cyclic dynamics and strong Allee effects promote deterministic collapses. These collapses occur with decreasing predator mortality and/or increasing susceptibility of the prey to fall below the threshold Allee density (e.g., due to increased carrying capacity or the Allee threshold itself). On the other hand, weak Allee effects (without unstable equilibrium in prey dynamics) enlarge the range of carrying capacities for which the cycles occur if predators exhibit decelerating functional responses. We discuss the results in the light of conservation strategies, eradication of alien species, and successful introduction of biocontrol agents.


92D40 Ecology
92D25 Population dynamics (general)
37N25 Dynamical systems in biology


Full Text: DOI


[1] Abrams, P. A.; Roth, J. D., The effects of enrichment of three-species food chains with nonlinear functional responses, Ecology, 75, 1118-1130 (1994)
[2] Abrams, P. A.; Walters, C. J., Invulnerable prey and the paradox of enrichment, Ecology, 77, 1125-1133 (1996)
[3] Andersen, T.; Elser, J. J.; Hessen, D. O., Stoichiometry and population dynamics, Ecol. Lett., 7, 884-900 (2004)
[4] Bohannan, B. J.M.; Lenski, R. E., Effect of prey heterogeneity on the response of a model food chain to resource enrichment, Am. Nat., 153, 73-82 (1999)
[5] Boukal, D. S.; Berec, L., Single-species models of the Allee effect: extinction boundaries, sex ratios and mate encounters, J. Theor. Biol., 218, 375-394 (2002)
[6] Collings, J. B., The effects of the functional response on the bifurcation behavior of a mite predator-prey interaction model, J. Math. Biol., 36, 149-168 (1997) · Zbl 0890.92021
[7] Courchamp, F.; Macdonald, D. W., Crucial importance of pack size in the African wild dog Lycaon pictus, Anim. Conserv., 4, 169-174 (2001)
[8] Courchamp, F.; Clutton-Brock, T.; Grenfell, B., Inverse density dependence and the Allee effect, Trends Ecol. Evol., 14, 405-410 (1999)
[9] Courchamp, F.; Grenfell, B. T.; Clutton-Brock, T. H., Impact of natural enemies on obligately cooperative breeders, Oikos, 91, 311-322 (2000)
[10] Courchamp, F.; Rasmussen, G. S.A.; Macdonald, D. W., Small pack size imposes a trade-off between hunting and pup-guarding in the painted hunting dog Lycaon pictus, Behav. Ecol., 13, 20-27 (2002)
[11] de Roos, A. M.; Persson, L., Size-dependent life-history traits promote catastrophic collapses of top predators, Proc. Natl. Acad. Sci., 99, 12907-12912 (2002)
[12] Dennis, B., Allee effects: population growth, critical density, and the chance of extinction, Nat. Resour. Modeling, 3, 481-538 (1989) · Zbl 0850.92062
[13] Dray, F. A.; Center, T. D.; Wheeler, G. S., Lessons from unsuccessful attempts to establish Spodoptera pectinicornis (Lepidoptera: Noctuidae), a biological control agent of waterlettuce, Biocontrol Sci. Technol., 11, 301-316 (2001)
[14] Dwyer, G.; Dushoff, J.; Yee, S. H., The combined effects of pathogens and predators on insect outbreaks, Nature, 430, 341-345 (2004)
[15] Elkinton, J. S.; Liebhold, A. M.; Muzika, R. M., Effects of alternative prey on predation by small mammals on gypsy moth pupae, Popul. Ecol., 46, 171-178 (2004)
[16] Ermentrout, B., Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students (2002), SIAM: SIAM Philadelphia, PA · Zbl 1003.68738
[17] Ferguson, C. S.; Elkinton, J. S.; Gould, J. R.; Wallner, W. E., Population regulation of gypsy-moth (Lepidoptera, Lymantriidae) by parasitoids—does spatial density-dependence lead to temporal density-dependence?, Environ. Entomol., 23, 1155-1164 (1994)
[18] Gascoigne, J. C.; Lipcius, R. N., Allee effects driven by predation, J. Appl. Ecol., 41, 801-810 (2004)
[19] Genkai-Kato, M.; Yamamura, N., Unpalatable prey resolves the paradox of enrichment, Proc. R. Soc. London B, 266, 1215-1219 (1999)
[20] Gilpin, M. E., Enriched predator-prey systems: theoretical stability, Science, 177, 902-904 (1972)
[21] Groom, M. J., Allee effects limit population viability of an annual plant, Am. Nat., 151, 487-496 (1998)
[22] Gross, T.; Ebenhoh, W.; Feudel, U., Enrichment and foodchain stability: the impact of different forms of predator-prey interaction, J. Theor. Biol., 227, 349-358 (2004) · Zbl 1439.92192
[23] Hackney, E. E.; McGraw, J. B., Experimental demonstration of an Allee effect in American ginseng, Conserv. Biol., 15, 129-136 (2001)
[24] Hassell, M. P.; Comins, H. N., Sigmoid functional responses and population stability, Theor. Popul. Biol., 14, 62-67 (1978) · Zbl 0386.92010
[25] Holyoak, M., Effects of nutrient enrichment on predator-prey metapopulation dynamics, J. Anim. Ecol., 69, 985-997 (2000)
[26] Hopper, K. R.; Roush, R. T., Mate finding, dispersal, number released, and the success of biological control introductions, Ecol. Entomol., 18, 321-331 (1993)
[27] Hutchings, J. A.; Reynolds, J. D., Marine fish population collapses: consequences for recovery and extinction risk, BioScience, 54, 297-309 (2004)
[28] Jansen, V. A.A.; de Roos, A. M., The role of space in reducing population cycles, (Dieckmann, U.; Law, R.; Metz, J. A.J., The Geometry of Ecological Interactions: Simplifying Spatial Complexity (2000), Cambridge University Press: Cambridge University Press Cambridge), 183-201
[29] Kent, A.; Doncaster, C. P.; Sluckin, T., Consequences for predators of rescue and Allee effects on prey, Ecol. Modelling, 162, 233-245 (2003)
[30] Křivan, V., Optimal foraging and predator-prey dynamics, Theor. Popul. Biol., 49, 265-290 (1996) · Zbl 0870.92019
[31] Kuussaari, M.; Saccheri, I.; Camara, M.; Hanski, I., Allee effect and population dynamics in the Glanville fritillary butterfly, Oikos, 82, 384-392 (1998)
[32] Lamont, B. B.; Klinkhamer, P. G.L.; Witkowski, E. T.F., Population fragmentation may reduce fertility to zero in Banksia goodi—a demonstration of the Allee effect, Oecologia, 94, 446-450 (1993)
[33] Liebhold, A.; Bascompte, J., The Allee effect, stochastic dynamics and the eradication of alien species, Ecol. Lett., 6, 133-140 (2003)
[34] Liermann, M.; Hilborn, R., Depensation: evidence, models and implications, Fish Fish., 2, 33-58 (2001)
[35] Loladze, I.; Kuang, Y.; Elser, J. J., Stoichiometry in producer-grazer systems: linking energy flow and nutrient cycling, Bull. Math. Biol., 62, 1137-1162 (2000) · Zbl 1323.92098
[36] McCauley, E.; Nisbet, R. M.; Murdoch, W. W.; de Roos, A. M.; Gurney, W. S.C., Large-amplitude cycles of Daphnia and its algal prey in enriched environments, Nature, 40, 653-656 (1999)
[37] Mooring, M. S.; Fitzpatrick, T. A.; Nishihira, T. T.; Reisig, D. D., Vigilance, predation risk, and the Allee effect in desert bighorn sheep, J. Wildl. Manage., 68, 519-532 (2004)
[38] Morris, D. W., Measuring the Allee effect: positive density dependence in small mammals, Ecology, 83, 14-20 (2002)
[39] Murdoch, W. W., Switching in general predators: experiments on predator specificity and stability of prey populations, Ecol. Monogr., 39, 335-354 (1969)
[40] Murdoch, W. W.; Nisbet, R. M.; McCauley, E.; DeRoos, A. M.; Gurney, W. S.C., Plankton abundance and dynamics across nutrient levels: tests of hypotheses, Ecology, 79, 1339-1356 (1998)
[41] Nisbet, R. M.; de Roos, A. M.; Wilson, W. G.; Snyder, R. E., Discrete consumers, small scale resource heterogeneity, and population stability, Ecol. Lett., 1, 34-37 (1998)
[42] Nunney, L., The influence of the type 3 (sigmoid) functional response upon the stability of predator-prey difference models, Theor. Popul. Biol., 18, 257-278 (1980) · Zbl 0447.92019
[43] Oaten, A.; Murdoch, W. W., Functional response and stability in predator-prey systems, Am. Nat., 109, 289-298 (1975)
[44] Oksanen, T.; Oksanen, L.; Schneider, M.; Aunapuu, M., Regulation, cycles and stability in northern carnivore-herbivore systems: back to first principles, Oikos, 94, 101-117 (2001)
[45] Persson, A.; Hansson, L. A.; Bronmark, C.; Lundberg, P.; Pettersson, L. B.; Greenberg, L.; Nilsson, P. A.; Nystrom, P.; Romare, P.; Tranvik, L., Effects of enrichment on simple aquatic food webs, Am. Nat., 157, 654-669 (2001)
[46] Real, L. A., The kinetics of functional response, Am. Nat., 111, 289-300 (1977)
[47] Rosenzweig, M. L., The paradox of enrichment: destabilization of exploitation ecosystems in ecological time, Science, 171, 385-387 (1971)
[48] Rowe, S.; Hutchings, J. A.; Bekkevold, D.; Rakitin, A., Depensation, probability of fertilization, and the mating system of Atlantic cod (Gadus morhua L.), ICES J. Mar. Sci., 61, 1144-1150 (2004)
[49] Ruxton, G. D., Short-term refuge use and stability of predator-prey models, Theor. Popul. Biol., 47, 1-17 (1995) · Zbl 0812.92023
[50] Ruxton, G. D.; Gurney, W. S.C; de Roos, A. M., Interference and generation cycles, Theor. Popul. Biol., 42, 235-253 (1992) · Zbl 0768.92025
[51] Sarnelle, O.; Knapp, R. A., Zooplankton recovery after fish removal: limitations of the egg bank, Limnol. Oceanogr., 49, 4, 1382-1392 (2004)
[52] Scheffer, M.; De Boer, R. J., Implications of spatial heterogeneity for the paradox of enrichment, Ecology, 76, 2270-2277 (1995)
[53] Sinclair, A. R.E.; Pech, R. P.; Dickman, C. R.; Hik, D.; Mahon, P.; Newsome, A. E., Predicting effects of predation on conservation of endangered prey, Conserv. Biol., 12, 564-575 (1998)
[54] Sommer, U., Phosphorus-limited Daphnia: intraspecific facilitation instead of competition, Limnol. Oceanogr., 37, 966-973 (1992)
[55] Stephens, P. A.; Sutherland, W. J.; Freckleton, R. P., What is the Allee effect?, Oikos, 87, 185-190 (1999)
[56] Sugie, J.; Miyamoto, K.; Morino, K., Absence of limit cycles of a predator-prey system with a sigmoid functional response, Appl. Math. Lett., 9, 85-90 (1996) · Zbl 0865.34032
[57] van Baalen, M.; Sabelis, M. W., The milker-killer dilemma in spatially structured predator-prey interactions, Oikos, 74, 391-400 (1995)
[58] van Baalen, M.; Krivan, V.; van Rijn, P. C.J.; Sabelis, M. W., Alternative food, switching predators, and the persistence of predator-prey systems, Am. Nat., 157, 512-524 (2001)
[59] Verschoor, A. M.; Vos, M.; van der Stap, I., Inducible defences prevent strong population fluctuations in bi- and tritrophic food chains, Ecol. Lett., 7, 1143-1148 (2004)
[60] Vos, M.; Kooi, B. W.; DeAngelis, D. L.; Mooij, W. M., Inducible defences and the paradox of enrichment, Oikos, 105, 471-480 (2004)
[61] Webb, C., A complete classification of Darwinian extinction in ecological interactions, Am. Nat., 161, 181-205 (2003)
[62] Zhou, S.-R.; Liu, Y.-F.; Wang, G., The stability of predator-prey systems subject to the Allee effects, Theor. Popul. Biol., 67, 23-31 (2005) · Zbl 1072.92060
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.