zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust stability test of a class of linear time-invariant interval fractional-order system using Lyapunov inequality. (English) Zbl 1123.93074
Summary: This paper provides a new analytical robust stability checking method of fractional-order linear time invariant interval uncertain system. This paper continues the authors’ previous work [{\it Y. Chen, H. Ahn} and {\it I. Podlubny}, Robust stability check of fractional-order linear time invariant systems with interval uncertainties, in: Proc. IEEE Conf. Mechatronics Autom., Niagara Falls, Canada, 210--215 (2005)] where matrix perturbation theory was used. For the new robust stability checking, Lyapunov inequality is utilized for finding the maximum eigenvalue of a Hermitian matrix. Through numerical examples, the usefulness and the effectiveness of the newly proposed method are verified.

93D09Robust stability of control systems
93C25Control systems in abstract spaces
93C05Linear control systems
Full Text: DOI
[1] M. Axtell, E.M. Bise, Fractional calculus applications in control systems, in: Proceedings of the IEEE 1990 National Aerospace and Electronics Conference, New York, USA, 1990, pp. 563 -- 566.
[2] Bonnet, C.; Partington, J. R.: Coprime factorizations and stability of fractional differential systems. Systems control lett. 41 (2000) · Zbl 0985.93048
[3] Caputo, M.: Linear models of dissipation whose q is almost frequency independent-II. Geophys. J. R. astronom. Soc. 13, 529-539 (1967)
[4] YangQuan Chen, Hyo-Sung Ahn, I. Podlubny, Robust stability check of fractional order linear time invariant systems with interval uncertainties, in: Proceedings of the IEEE Conference on Mechatronics and Automation, Niagara Falls, Canada, July, 2005, pp. 210 -- 215. · Zbl 1172.94385
[5] YangQuan Chen, Hyosung Ahn, Dingyü Xue, Robust controllability of interval fractional order linear time invariant systems, in: Proceedings of ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA, September 24 -- 28, 2005, pp. 1 -- 9.
[6] YangQuan Chen, Dingyü Xue, Huifang Dou, Fractional calculus and biomimetic control, in: Proceedings of the First IEEE International Conference on Robotics and Biomimetics (RoBio04), Shengyang, China, August 2004. IEEE, pp. robio2004 -- 347.
[7] Debnath, L.: A brief historical introduction to fractional calculus. Int. J. Math. educ. Sci. technol. 35, No. 4, 487-501 (2004)
[8] Gutman, S.; Jury, E. I.: A general theory for matrix root-clustering in subregions of the complex plane. IEEE trans. Automat. control 26, No. 4, 853-863 (1981) · Zbl 1069.93518
[9] G.I. Hargreaves, Interval analysis in Matlab. Numerical Analysis Report No. 416, The University of Manchester, December, 2002.
[10] Hertz, D.: The eigenvalues and stability of Hermitian interval matrices. IEEE trans. Circuit system-I: fundamental theory appl. 39, No. 6 (1992)
[11] B.J. Lurie, Three-Parameter tunable Tilt-Integral-Derivative (TID) Controller. US Patent US5371670, 1994.
[12] J.A. Tenreiro Machado, Special issue on fractional calculus and applications. Nonlinear Dynamics (Guest Editor), 29 (March) (2002) 1 -- 385.
[13] Manabe, S.: The non-integer integral and its application to control systems. JIEE (Jpn. Instit. elect. Eng.) J. 80, No. 860, 589-597 (1960)
[14] Manabe, S.: The non-integer integral and its application to control systems. ETJ jpn. 6, No. 3 -- 4, 83-87 (1961)
[15] D. Matignon, Stability result on fractional differential equations with applications to control processing, in: IMACS-SMC Proceedings, Lille, France, July, 1996, pp. 963 -- 968.
[16] D. Matignon, Generalized fractional differential and difference equations: stability properties and modelling issues, in: Proceedings of the Mathematical Theory of Networks and Systems symposium (MTNS’98), Padova, Italy, July, 1998, pp. 503 -- 506.
[17] D. Matignon, Stability properties for generalized fractional differential systems, in: D. Matignon, G. Montseny (Eds.), Proceedings of the Colloquium FDS’98: Fractional Differential Systems: Models, Methods and Applications, number 5, Paris, December, 1998, pp. 145 -- 158. · Zbl 0920.34010
[18] D. Matignon, Stability properties for generalized fractional differential systems, in: ESAIM: Proceedings, December, 1998, vol. 5, pp. 145 -- 158. Available from: <http://www.emath.fr/Maths/Proc/Vol.5/>. · Zbl 0920.34010
[19] Matignon, D.; Novel, B. D’andréa: Some results on controllability and observability of finite-dimensional fractional differential systems. Proceedings of the computational engineering in systems and application multiconference 2, 952-956 (1996)
[20] Molinari, B. P.: The stabilizing solution of the discrete algebraic Riccati equation. IEEE trans. Automat. control 20, No. 3, 393-399 (1975) · Zbl 0301.93048
[21] M. Moze, J. Sabatier, LMI tools for stability analysis of fractional systems, in: Proceedings of ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, CA, September 24 -- 28, 2005, pp. 1 -- 9.
[22] M.D. Ortigueira, J.A. Tenreiro Machado, Special issue on fractional signal processing and applications. Signal Processing (Guest Editors) 83 (11) (2003) 2285 -- 2480.
[23] Oustaloup, A.: Fractional order sinusoidal oscillators: optimization and their use in highly linear FM modulators. IEEE trans. Circuits systems 28, No. 10, 1007-1009 (1981)
[24] Oustaloup, A.; Mathieu, B.; Lanusse, P.: The CRONE control of resonant plants: application to a flexible transmission. Eur. J. Control 1, No. 2 (1995)
[25] Oustaloup, A.; Moreau, X.; Nouillant, M.: The CRONE suspension. Control eng. Practice 4, No. 8, 1101-1108 (1996)
[26] Petráš, I.; Chen, Yangquan; Vinagre, B. M.: Robust stability test for interval fractional order linear systems. Unsolved problems in the mathematics of systems and control (2004)
[27] I. Petráš, YangQuan Chen, B.M. Vinagre, I. Podlubny, Stability of linear time invariant systems with interval fractional orders and interval coefficients, in: Proceedings of the International Conference on Computation Cybernetics (ICCC04), Viena Technical University, Viena, Austria, 8/30-9/1 2005, 1 --- 4.
[28] Podlubny, I.: Fractional differential equations. Mathematics in science and engineering (1999) · Zbl 0924.34008
[29] Podlubny, I.: Fractional-order systems and PI$\lambda d\mu $-controllers. IEEE trans. Automat. control 44, No. 1, 208-214 (1999) · Zbl 1056.93542
[30] Raynaud, H. F.; Zergaïnoh, A.: State-space representation for fractional order controllers. Automatica 36, 1017-1021 (2000) · Zbl 0964.93024
[31] Rugh, W. J.: Linear systems theory. (1993)
[32] Skaar, S. B.; Michel, A. N.; Miller, R. K.: Stability of viscoelastic control systems. IEEE trans. Automat. control 33, No. 4, 348-357 (1988) · Zbl 0641.93051
[33] Vidyasagar, M.: A characterization of eat and a constructive proof of the controllability criterion. IEEE trans. Automat. control 60, No. 2, 370-371 (1971)
[34] B.M. Vinagre, YangQuan Chen, Lecture notes on fractional calculus applications in automatic control and robotics, in: Blas M. Vinagre, YangQuan Chen (Eds.), The 41st IEEE CDC2002 Tutorial Workshop # 2, Las Vegas, Nevada, USA, 2002, pp. 1 -- 310. Available from: <http://mechatronics.ece.usu.edu/foc/cdc02_tw2_ln.pdf>.
[35] Xue, Dingyü; Chen, Yangquan: A comparative introduction of four fractional order controllers. Proceedings of the 4th IEEE world congress on intelligent control and automation (WCICA02), 3228-3235 (2002)