zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Robust minimum variance linear state estimators for multiple sensors with different failure rates. (English) Zbl 1123.93085
Summary: Linear minimum variance unbiased state estimation is considered for systems with uncertain parameters in their state space models and sensor failures. The existing results are generalized to the case where each sensor may fail at any sample time independently of the others. For robust performance, stochastic parameter perturbations are included in the system matrix. Also, stochastic perturbations are allowed in the estimator gain to guarantee resilient operation. An illustrative example is included to demonstrate performance improvement over the Kalman filter which does not include sensor failures in its measurement model.

93E11Filtering in stochastic control
93E03General theory of stochastic systems
93A30Mathematical modelling of systems
93C73Perturbations in control systems
Full Text: DOI
[1] Dekoning, W. L.: Optimal estimation of linear discrete-time systems with stochastic parameters. Automatica 20, 113-115 (1984)
[2] Horn, R. A.; Johnson, C. R.: Topics in matrix analysis. (1991) · Zbl 0729.15001
[3] Matveev, A. S.; Savkin, A. V.: The problem of state estimation via asynchronous communication channels with irregular transmission times. IEEE transactions on automatic control 48, No. 4, 670-676 (2003) · Zbl 1025.93019
[4] Nahi, N. E.: Optimal recursive estimation with uncertain observation. IEEE transaction on information theory 15, 457-462 (1969) · Zbl 0174.51102
[5] Nanacara, W.; Yaz, E.: Recursive estimator for linear and nonlinear systems with uncertain observations. Signal processing 62, 215-228 (1997) · Zbl 0908.93061
[6] Petersen, I. R.; Savkin, A. V.: Robust Kalman filtering for signals and systems with large uncertainties. (1999) · Zbl 1033.93002
[7] Rajasekaran, P. K.; Satyanarayana, N.; Srinath, M. D.: Optimum linear estimation of stochastic signals in the presence of multiplicative noise. IEEE transactions on aerospace electronic systems 7, 462 (1971) · Zbl 0218.93018
[8] Savkin, A. V.; Petersen, I. R.: Robust filtering with missing data and a deterministic description of noise and uncertainty. International journal of systems science 28, No. 4, 373-378 (1997) · Zbl 0887.93069
[9] Savkin, A. V.; Petersen, I. R.; Moheimani, S. O. R.: Model validation and state estimation for uncertain continuous-time systems with missing discrete-continuous data. Computers and electrical engineering 25, No. 1, 29-43 (1999)
[10] Sinopoli, B.; Schenato, L.; Franceschetti, M.; Poolla, K.; Jordan, M. I.; Sastry, S. S.: Kalman filtering with intermittent observations. IEEE transactions on automatic control 49, No. 9, 1453-1464 (2004)
[11] Smith, S.; Seiler, P.: Estimation with lossy measurements: jump estimators for jump systems. IEEE transactions on automatic control 48, No. 12, 2163-2171 (2003)
[12] Theodor, Y.; Shaked, U.: Robust discrete-time minimum variance filtering. IEEE transactions on signal processing 44, No. 2, 181-189 (1996)
[13] Tugnait, J. K.: Stability of optimum linear estimators of stochastic signals in white multiplicative noise. IEEE transactions on automatic control 26, 757-761 (1981) · Zbl 0481.93062
[14] Wang, Z.; Ho, D. W. C.; Liu, X.: Variance-constrained filtering for uncertain stochastic systems with missing measurements. IEEE transactions on automatic control 48, No. 7, 1254-1258 (2003)
[15] Wang, Z.; Yang, F.; Ho, D. W. C.; Liu, X.: Robust finite-horizon filtering for stochastic systems with missing measurements. IEEE signal processing letters 12, No. 6, 437-440 (2005)
[16] Wang, Z.; Zhu, J.; Unbehauen, H.: Robust filter design with time-varying parameter uncertainty and error variance constraints. International journal of control 72, No. 1, 30-38 (1999) · Zbl 0953.93069
[17] Wu, P., Yaz, E. E., & Olejniczak, K. J. (1997). Harmonic estimation with random sensor delay. In Proceedings of IEEE CDC, San Diego, CA, pp. 1424-1525.
[18] Yaz, E.: Observer design for stochastic-parameter systems. International journal of control 46, 1213-1217 (1987) · Zbl 0639.93063
[19] Yaz, E.: Implications of a result of observer design for stochastic parameter systems. International journal of control 47, 1355-1360 (1988) · Zbl 0652.93061
[20] Yaz, E.: Full and reduced-order observer design for discrete stochastic bilinear systems. IEEE transactions on automatic control 37, 503-505 (1992)
[21] Yaz, E. E.; Jeong, C. S.; Yaz, Y. I.: A LMI approach to discrete-time observer design with stochastic resilience. Journal of computational and applied mathematics 188, 246-255 (2006) · Zbl 1108.93026
[22] Yaz, E. E.; Jeong, C. S.; Yaz, Y. I.; Bahakeem, A.: Resilient design of discrete-time observers with general criteria using lmis. Mathematical and computer modeling 42, No. 9-10, 931-938 (2005) · Zbl 1121.93011
[23] Yaz, E., Wu, P., Olejniczak, K., & Yaz, Y. I. (1998). Reduced-order harmonic estimation with probable sensor failures. In Proceedings of IEEE CDC, Tampa, Florida, pp. 1297-1302.