Olenko, A. Ya. An estimate of the mean square error of interpolation of stochastic processes. (Ukrainian, English) Zbl 1124.60035 Teor. Jmovirn. Mat. Stat. 72, 101-110 (2005); translation in Theory Probab. Math. Stat. 72, 113-123 (2006). For stochastic processes of the weak Cramér class \(\xi(t)=\int_{\Lambda}f(t,\lambda)Z_{\xi}(d\lambda)\) with the correlation function \(B(t,s)=\int_{\Lambda}{\int_{\Lambda}}^{\ast} f(t,\lambda)\overline{ f(s,\mu)}F_{\xi}(d\lambda,d\mu)\) the author considers the approximation problem \[ \xi(t)\approx Y_{\mathcal J,\omega}(\xi,t)=\sum_{n\in\mathcal J}\sin(t\omega-n)\xi({n}/{\omega}) \] in the \(L_2(\Omega)\) sense. The optimal \(\varepsilon\) is found such that \(E| \xi(t)- Y_{\mathcal J,\omega}(\xi,t)| ^2<\varepsilon \| F_{\xi}\| (\Lambda,\Lambda)\). The rates of the mean square convergence of the error of interpolation for stochastic processes of the weak Cramér class and for processes generated by an orthogonal stochastic measure are estimated. Reviewer: Mikhail P. Moklyachuk (Kyïv) Cited in 1 Document MSC: 60G12 General second-order stochastic processes 94A20 Sampling theory in information and communication theory 26D15 Inequalities for sums, series and integrals 30D15 Special classes of entire functions of one complex variable and growth estimates 41A05 Interpolation in approximation theory Keywords:Whittaker-Kotelnikov-Shannon interpolation; mean square error; Cramér class; stochastic measure PDFBibTeX XMLCite \textit{A. Ya. Olenko}, Teor. Ĭmovirn. Mat. Stat. 72, 101--110 (2005; Zbl 1124.60035); translation in Theory Probab. Math. Stat. 72, 113--123 (2006) Full Text: Link