Shevchenko, Georgij Euler approximations of anticipating quasilinear stochastic differential equations. (Ukrainian, English) Zbl 1124.60054 Teor. Jmovirn. Mat. Stat. 72, 150-157 (2005); translation in Theory Probab. Math. Stat. 72, 167-175 (2006). The rate of convergence of the Euler type approximations for the anticipating quasilinear stochastic differential equation \[ X(t)=X_0+\int_{0}^{t}b(s,X(s),\omega)\,ds+\int_0^t\sigma(s)X(s) W(s)\,ds, \] where \(B(t)\) is a Brownian motion, \(W(t)=\dot{B}(t)\) is a white noise process, is estimated. Reviewer: Mikhail P. Moklyachuk (Kyïv) Cited in 1 Document MSC: 60H35 Computational methods for stochastic equations (aspects of stochastic analysis) 65C30 Numerical solutions to stochastic differential and integral equations Keywords:stochastic differential equation; Euler approximation; Brownian motion PDFBibTeX XMLCite \textit{G. Shevchenko}, Teor. Ĭmovirn. Mat. Stat. 72, 150--157 (2005; Zbl 1124.60054); translation in Theory Probab. Math. Stat. 72, 167--175 (2006) Full Text: Link