Influence of stochastic perturbation on prey-predator systems. (English) Zbl 1124.92055

Summary: We analyse the influence of various stochastic perturbations on prey-predator systems. The prey-predator model is described by stochastic versions of a deterministic Lotka-Volterra system. We study the long-time behaviour of both trajectories and distributions of the solutions. We indicate the differences between the deterministic and stochastic models.


92D40 Ecology
60H30 Applications of stochastic analysis (to PDEs, etc.)
47D07 Markov semigroups and applications to diffusion processes
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
92D25 Population dynamics (general)
Full Text: DOI


[1] Aida, S.; Kusuoka, S.; Strook, D., On the support of Wiener functionals, (Elworthy, K. D.; Ikeda, N., Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotic. Asymptotic Problems in Probability Theory: Wiener Functionals and Asymptotic, Pitman Research Notes in Math. Series, vol. 284 (1993), Longman Scient. Tech.), 3 · Zbl 0790.60047
[2] Arnold, L.; Horsthemke, W.; Stucki, J. W., The influence of external real and white noise on the Lotka-Volterra model, Biomed. J., 21, 451 (1979) · Zbl 0433.92019
[3] Ben Arous, G.; Léandre, R., Décroissance exponentielle du noyau de la chaleur sur la diagonale (II), Probab. Theory Relat. Fields, 90, 377 (1991) · Zbl 0734.60027
[4] Chessa, S.; Fujita Yashima, H., The stochastic equation of predator-prey population dynamics, Boll. Unione Mat. Ital. Sez. B Artic. Ric. Mat., 5, 8, 789 (2002), (Italian) · Zbl 1177.60057
[5] Khasminskii˘, R. Z.; Klebaner, F. C., Long term behaviour of solutions of the Lotka-Volterra system under small random perturbations, Ann. Appl. Probab., 11, 953 (2001) · Zbl 1061.34513
[6] Norris, J., Simplified Malliavin calculus, (Séminaire de probabilitiés XX. Séminaire de probabilitiés XX, Lecture Notes in Mathematics, vol. 1204 (1986), Springer), 101 · Zbl 0609.60066
[7] Pichór, K.; Rudnicki, R., Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., 249, 668 (2000) · Zbl 0965.47026
[8] Rudnicki, R., Long-time behaviour of a stochastic prey-predator model, Stoch. Processes Appl., 108, 93 (2003) · Zbl 1075.60539
[9] Stroock, D. W.; Varadhan, S. R.S., On the support of diffusion processes with applications to the strong maximum principle, (Proc. Sixth Berkeley Symposium on Mathematical Statistics and Probability, vol. III (1972), University of California Press: University of California Press Berkeley), 333 · Zbl 0255.60056
[10] Volterra, V., Leçons sur la théorie mathematique de la lutte pour la vie (1931), Gauthier-Villar: Gauthier-Villar Paris · JFM 57.0466.02
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.