zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Influence of stochastic perturbation on prey-predator systems. (English) Zbl 1124.92055
Summary: We analyse the influence of various stochastic perturbations on prey-predator systems. The prey-predator model is described by stochastic versions of a deterministic Lotka-Volterra system. We study the long-time behaviour of both trajectories and distributions of the solutions. We indicate the differences between the deterministic and stochastic models.

60H30Applications of stochastic analysis
47D07Markov semigroups of linear operators and applications to diffusion processes
60H10Stochastic ordinary differential equations
92D25Population dynamics (general)
Full Text: DOI
[1] Aida, S.; Kusuoka, S.; Strook, D.: On the support of Wiener functionals. Pitman research notes in math. Series 284, 3 (1993)
[2] Arnold, L.; Horsthemke, W.; Stucki, J. W.: The influence of external real and white noise on the Lotka -- Volterra model. Biomed. J. 21, 451 (1979) · Zbl 0433.92019
[3] Ben Arous, G.; Léandre, R.: Décroissance exponentielle du noyau de la chaleur sur la diagonale (II). Probab. theory relat. Fields 90, 377 (1991)
[4] Chessa, S.; Yashima, H. Fujita: The stochastic equation of predator -- prey population dynamics. Boll. unione mat. Ital. sez. B artic. Ric. mat. 5, No. 8, 789 (2002) · Zbl 1177.60057
[5] Khasminskii&breve, R. Z.; ; Klebaner, F. C.: Long term behaviour of solutions of the Lotka -- Volterra system under small random perturbations. Ann. appl. Probab. 11, 953 (2001) · Zbl 1061.34513
[6] Norris, J.: Simplified Malliavin calculus. Lecture notes in mathematics 1204, 101 (1986)
[7] Pichór, K.; Rudnicki, R.: Continuous Markov semigroups and stability of transport equations. J. math. Anal. appl. 249, 668 (2000) · Zbl 0965.47026
[8] Rudnicki, R.: Long-time behaviour of a stochastic prey -- predator model. Stoch. processes appl. 108, 93 (2003) · Zbl 1075.60539
[9] Stroock, D. W.; Varadhan, S. R. S.: On the support of diffusion processes with applications to the strong maximum principle. Proc. sixth Berkeley symposium on mathematical statistics and probability, 333 (1972) · Zbl 0255.60056
[10] Volterra, V.: Leçons sur la théorie mathematique de la lutte pour la vie. (1931) · Zbl 57.0466.02