zbMATH — the first resource for mathematics

Local controllability of a 1-D Schrödinger equation. (English) Zbl 1124.93009
Summary: We consider a nonrelativistic charged particle in a 1-D box of potential. This quantum system is subject to a control, which is a uniform electric field. It is represented by a complex probability amplitude solution of a Schrödinger equation. We prove the local controllability of this nonlinear system around the ground state. Our proof uses the return method, a Nash-Moser implicit function theorem and moment theory.

93B05 Controllability
35Q40 PDEs in connection with quantum mechanics
81Q99 General mathematical topics and methods in quantum theory
Full Text: DOI
[1] Ball, J.M.; Marsden, J.E.; Slemrod, M., Controllability for distributed bilinear systems, SIAM J. control. optim., 20, 575-597, (July 1982)
[2] Coron, J.-M., Global asymptotic stabilization for controllable systems without drift, Math. control signals systems, 5, 295-312, (1992) · Zbl 0760.93067
[3] Coron, J.-M., Contrôlabilité exacte frontière de l’équation d’Euler des fluides parfaits incompressibles bidimensionnels, C. R. acad. sci. Paris, 317, 271-276, (1993) · Zbl 0781.76013
[4] Coron, J.-M., On the controllability of 2-D incompressible perfect fluids, J. math. pures appl., 75, 155-188, (1996) · Zbl 0848.76013
[5] Coron, J.-M., Local controllability of a 1-D tank containing a fluid modeled by the shallow water equations, ESAIM control optim. calc. var., 8, 513-554, (June 2002)
[6] Coron, J.-M., Return method: some applications to flow control, (), 655-704 · Zbl 1019.93025
[7] Coron, J.-M.; Crépeau, E., Exact boundary controllability of a nonlinear KdV equation with critical lengths, J. eur. math. soc., 6, 367-398, (2004) · Zbl 1061.93054
[8] Coron, J.-M.; Trelat, E., Global steady-state controllability of 1-D semilinear heat equations, SIAM J. control. optim., 43, 549-569, (2004) · Zbl 1101.93011
[9] Defranceschi, M.; Le Bris, C., Mathematical models and methods for ab initio quantum chemistry, (2000), Springer-Verlag Berlin/New York · Zbl 0979.00023
[10] Fursikov, A.V.; Imanuvilov, O.Yu., Exact controllability of the navier – stokes and Boussinesq equations, Russian math. surveys, 54, 565-618, (1999) · Zbl 0970.35116
[11] Glass, O., Exact boundary controllability of 3-D Euler equation, ESAIM control optim. calc. var., 5, 1-44, (2000) · Zbl 0940.93012
[12] Glass, O., On the controllability of the vlasov – poisson system, J. differential equations, 195, 332-379, (2003) · Zbl 1109.93007
[13] Gromov, G., Partial differential relations, (1986), Springer-Verlag Berlin/New York · Zbl 0651.53001
[14] Haraux, A., Séries lacunaires et contrôle semi-interne des vibrations d’une plaque rectangulaire, J. math. pures appl., 68, 457-465, (1989) · Zbl 0685.93039
[15] Hormander, L., On the nash – moser implicit function theorem, Annales academiae scientiarum fennicae, 10, 255-259, (1985) · Zbl 0591.58003
[16] Horsin, Th., On the controllability of the Burgers equation, ESAIM control optim. calc. var., 3, 83-95, (1998) · Zbl 0897.93034
[17] Kato, T., Perturbation theory for linear operators, (1966), Springer-Verlag Berlin/New York · Zbl 0148.12601
[18] P. Rouchon. Control of a quantum particle in a moving potential well, in: 2nd IFAC Workshop on Lagrangian and Hamiltonian Methods for Nonlinear Control, Seville, 2003
[19] Sontag, E.D., Control of systems without drift via generic loops, IEEE trans. automat. control, 40, 1210-1219, (1995) · Zbl 0837.93019
[20] Zuazua, E., Remarks on the controllability of the Schrödinger equation, (), 181-199
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.