Mccaffrey, D. Geometric existence theory for the control-affine \(H_{\infty }\) problem. (English) Zbl 1124.93021 J. Math. Anal. Appl. 324, No. 1, 682-695 (2006). Summary: We consider the differential game formulation of the nonlinear state feedback \(H_{\infty }\) control problem, in which the control term enters linearly in the dynamics and quadratically in the cost. Under well-known conditions on the linearisation of this problem around the equilibrium point at the origin, there exists a stable Lagrangian manifold \(\Lambda\). This manifold has a generating function \(S\) quadratic at infinity. A Ljusternik-Schnirelman minimax construction produces from \(S\) a Lipschitz function \(W\) over state space. We show that, for problems in general position, \(-W\) is the lower value function for the \(H_{\infty }\) problem, and prove existence of a weak globally optimal set valued feedback solution in terms of \(\partial W\), the generalised gradient of \(W\). This feedback generalises, to a maximal region over which \(\Lambda\) is simply connected, the classical smooth feedback defined on the neighbourhood of the origin over which \(\Lambda\) has a well-defined projection onto state space. Cited in 2 Documents MSC: 93B36 \(H^\infty\)-control 93B52 Feedback control 91A23 Differential games (aspects of game theory) Keywords:\(H_{\infty }\) control; Lagrangian manifold; Hamilton-Jacobi-Bellman equation; graph selector; Ljusternik-Schnirelmann minimax construction × Cite Format Result Cite Review PDF Full Text: DOI References: [1] Ball, J. A.; Day, M. V.; Kachroo, P., Robust feedback control of a single server queueing system, Math. Control Signals Systems, 12, 4, 307-345 (1999) · Zbl 0940.93028 [2] Bardi, M.; Capuzzo-Dolcetta, I., Optimal Control and Viscosity Solutions of Hamilton-Jacobi-Bellman Equations (1997), Birkhäuser: Birkhäuser Boston · Zbl 0890.49011 [3] Bettiol, P.; Cardin, F., Lagrangian submanifold landscapes of necessary conditions for maxima in optimal control: global parametrizations and generalized solutions, Preprint SISSA 29/2004/M, 2004 [4] Chaperon, M., Lois de conservation et geometrie symplectique, C. R. Acad. Sci. Paris Ser. I Math., 312, 345-348 (1991) · Zbl 0721.58019 [5] Day, M. V., On Lagrange manifolds and viscosity solutions, J. Math. Syst. Estim. Contr., 8 (1998) · Zbl 1130.49306 [6] Filippov, A. F., Differential Equations with Discontinuous Right-Hand Sides (1998), Kluwer Academic: Kluwer Academic Dordrecht · Zbl 1098.34006 [8] Mawhin, J.; Willem, M., Critical Point Theory and Hamiltonian Systems, Appl. Math. Sci. Ser., vol. 74 (1989), Springer-Verlag: Springer-Verlag Berlin · Zbl 0676.58017 [9] McCaffrey, D.; Banks, S. P., Geometric existence theory for the nonlinear affine optimal regulator, J. Math. Anal. Appl., 305, 380-390 (2005) · Zbl 1141.49320 [11] Paternain, G. P.; Polterovich, L.; Siburg, K. F., Boundary rigidity for Lagrangian submanifolds, non-removable intersections and Aubry-Mather theory, Mosc. Math. J., 3, 593-619 (2003) · Zbl 1048.53058 [12] Sikorav, J. C., Sur les immersions lagrangiennes dans un fibre cotangent admettant une phase generatrice globale, C. R. Acad. Sci. Paris Ser. I Math., 302, 3, 119-122 (1986) · Zbl 0602.58019 [13] Soravia, P., \(H_\infty\) control of nonlinear systems: differential games and viscosity solutions, SIAM J. Control Optim., 34, 3, 1071-1097 (1996) · Zbl 0926.93019 [14] van der Schaft, A. J., On a state space approach to nonlinear \(H_\infty\) control, Syst. Control Lett., 16, 1-8 (1991) · Zbl 0737.93018 [15] van der Schaft, A. J., \(L_2\) gain analysis of nonlinear systems and nonlinear state feedback \(H_\infty\) control, IEEE Trans. Automat. Control, AC-37, 6, 770-784 (1992) · Zbl 0755.93037 [16] Viterbo, C., Symplectic topology as the geometry of generating functions, Math. Ann., 292, 4, 685-710 (1992) · Zbl 0735.58019 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.