zbMATH — the first resource for mathematics

A delay-dependent approach to \(H_{\infty}\) filtering for stochastic delayed jumping systems with sensor non-linearities. (English) Zbl 1124.93056
Summary: A delay-dependent approach is developed to deal with the stochastic \(H_{\infty}\) filtering problem for a class of Itô type stochastic time-delay jumping systems subject to both the sensor non-linearities and the exogenous non-linear disturbances. The time delays enter into the system states, the sensor non-linearities and the external non-linear disturbances. The purpose of the addressed filtering problem is to seek an \(H_{\infty}\) filter such that, in the simultaneous presence of non-linear disturbances, sensor non-linearity as well as Markovian jumping parameters, the filtering error dynamics for the stochastic time-delay system is stochastically stable with a guaranteed disturbance rejection attenuation level \(\gamma\). By using Itô’s differential formula and the Lyapunov stability theory, we develop a linear matrix inequality approach to derive sufficient conditions under which the desired filters exist. These conditions are dependent on the length of the time delay. We then characterize the expression of the filter parameters, and use a simulation example to demonstrate the effectiveness of the proposed results.

93E03 Stochastic systems in control theory (general)
93C10 Nonlinear systems in control theory
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
93E15 Stochastic stability in control theory
Full Text: DOI
[1] Boukas EK, Deterministic and Stochastic Time-delay Systems (2002)
[2] Boyd S, Linear Matrix Inequalities in Systems and Control Theory (1994)
[3] DOI: 10.1109/TCSI.2003.813967 · Zbl 1368.93145
[4] DOI: 10.1016/j.sysconle.2004.10.005 · Zbl 1129.93547
[5] DOI: 10.1109/TSP.2005.857009 · Zbl 1370.94125
[6] DOI: 10.1016/j.sysconle.2005.05.005 · Zbl 1129.93538
[7] DOI: 10.1049/ip-cta:20040822
[8] DOI: 10.1109/TSP.2005.851116 · Zbl 1370.93274
[9] DOI: 10.1016/j.automatica.2005.08.005 · Zbl 1100.93519
[10] DOI: 10.1016/S0167-6911(03)00207-X · Zbl 1157.93467
[11] DOI: 10.1109/9.57016 · Zbl 0714.93060
[12] DOI: 10.1109/9.739070 · Zbl 0989.93043
[13] DOI: 10.1016/0167-6911(96)00048-5 · Zbl 0875.93476
[14] Kushur H, Stochastic Stability and Control (1976)
[15] DOI: 10.1007/s10957-004-1714-6 · Zbl 1062.93020
[16] DOI: 10.1016/S0167-6911(01)00099-8 · Zbl 0974.93053
[17] DOI: 10.1109/TCSII.2004.836882
[18] DOI: 10.1007/BFb0027479
[19] Pearson R, Proc. Amer. Contr. Conf pp 4404– (2001)
[20] DOI: 10.1016/j.sigpro.2005.05.005 · Zbl 1163.94387
[21] DOI: 10.1109/TCSII.2004.825596
[22] DOI: 10.1109/TSP.2006.874370 · Zbl 1373.94729
[23] DOI: 10.1080/00207179608921866 · Zbl 0841.93014
[24] DOI: 10.1109/9.975483 · Zbl 1017.93038
[25] DOI: 10.1016/j.automatica.2003.10.012 · Zbl 1040.93069
[26] DOI: 10.1109/TAC.2004.841935 · Zbl 1365.93377
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.