Cīrulis, Jānis Hilbert algebras as implicative partial semilattices. (English) Zbl 1125.03047 Cent. Eur. J. Math. 5, No. 2, 264-279 (2007). The infimum of two elements \(a\) and \(b\) of a Hilbert algebra is called the compatible meet of \(a\) and \(b\) if these elements are compatible in a certain sense. The main goal of the present paper is to study Hilbert algebras equipped with the compatible meet operation, which normally is partial. It is proved that a partial lower semilattice is a reduct of such an expanded Hilbert algebra if and only if both algebras have the same filters (see Theorem 3.9). Thus, an expanded Hilbert algebra is an implicative partial semilattice and conversely. Another important contribution of the paper is the characterization of the implication in an implicative partial semilattice in terms of filters of the underlying semilattice (see Theorem 4.5). Reviewer: Marius Tarnauceanu (Iaşi) Cited in 1 ReviewCited in 10 Documents MSC: 03G25 Other algebras related to logic 06A12 Semilattices Keywords:compatible elements; filter; Hilbert algebra; implicative semilattice; partial semilattice; compatible meet operation × Cite Format Result Cite Review PDF Full Text: DOI References: [1] J.C. Abbott: “Semi-boolean algebra”, Matem. Vestnik N. Ser., Vol. 4(19), (1967), pp. 177-198.; · Zbl 0153.02704 [2] J.C. Abbott: “Implication algebra”, Bull. Math. Soc. Sci. Math. R. S. Roumanie, Vol. 11, (1967), pp. 3-23.; · Zbl 0169.30401 [3] J. Berman and W.J. Block: “Free Lukasiewicz and hoop residuation algebras”, Studia Logica, Vol. 68, (2001), pp. 1-28.; [4] D. Busneag: “A note on deductive systems of a Hilbert algebra”, Kobe J. Math., Vol. 2, (1985), pp. 29-35.; · Zbl 0584.06005 [5] D. Busneag: “Hertz algebras of fractions and maximal Hertz algebras of quotients”, Math.Japon., Vol. 39, (1993), pp. 461-469.; · Zbl 0810.06011 [6] I. Chajda: “The lattice of deductive systems on Hilbert algebras”, Southeast Asian Bull. Math., Vol. 26, (2002), pp. 21-26. http://dx.doi.org/10.1007/s100120200022; · Zbl 1010.03054 [7] I. Chajda and R. Halaš: “Order algebras”, Demonstr.Math., Vol. 35, (2002), pp. 1-10.; · Zbl 1051.06005 [8] I. Chajda and Z. Seidl: “An algebraich approach to partial lattices”, Demonstr. Math., Vol. 30, (1997), pp. 485-494.; · Zbl 0910.06006 [9] J. Cīrulis: “Subtractive nearsemilattices”, Proc. Latvian Acad. Sci., Vol. 52B, (1998), pp. 228-233.; · Zbl 1027.06007 [10] J. Cīrulis: “(H)-Hilbert algebras are not same as Hertz algebras”, Bull. Sect. Log. (Lódź), Vol. 32, (2003), pp. 107-108.; · Zbl 1114.03311 [11] J. Cīrulis: “Hilbert algebras as implicative partial semilattices”, Abstracts of AAA-67, Potsdam,(2004), http://at.yorku.ca/cgi-bin/amca/canj-36.; [12] J. Cīrulis: “Multipliers,closure endomorphisms and quasi-decompositions of a Hilbert algebra”, Contrib. Gen. Algebra, Vol. 16, (2005), pp. 25-34.; · Zbl 1082.03056 [13] H.B. Curry: Foundations of Mathematical Logic, McGraw-Hill, New York e.a., 1963.; · Zbl 0163.24209 [14] A. Diego: Sobre Algebras de Hilbert, Notas de Logica Mat., Vol. 12, Inst. Mat. Univ. Nac. del Sur, Bahia Blanca, 1965.; [15] A. Diego: Les Algébres de Hilbert, Collect. de Logique Math., Sér A, Vol., 21, Gauthier-Willar, Paris, 1966.; · Zbl 0144.00105 [16] A.V. Figallo, G. Ramón and S. Saad: “A note on Hilbert algebras with infimum”, Mat.Contemp., Vol. 24, (2003), pp. 23-37.; · Zbl 1082.03057 [17] A. Figallo, Jr. and A. Ziliani: “Remarks on Hertz algebras and implicative semilattices”, Bull. Sect. Logic (Lódź), Vol. 24, 2005, pp. 37-42.; · Zbl 1114.03312 [18] G. Grätzer: General Lattice Theory, Akademie-Verlag, Berlin, 1978.; · Zbl 0385.06015 [19] R. Halaš: “Pseudocomplemented ordered sets”, Arch.Math.(Brno), Vol. 29, (1993), pp. 153-160.; · Zbl 0801.06007 [20] R. Halaš: “Remarks on commutative Hilbert algebras”, Math.Bohemica, Vol. 127, (2002), pp. 525-529.; · Zbl 1008.03039 [21] L. Henkin: “An algebraic characterization of quantifiers”, Fund. Math., Vol. 37, (1950), pp. 63-74.; · Zbl 0041.34804 [22] S.M. Hong and Y.B. Jun: “On a special class of Hilbert algebras”, Algebra Colloq., Vol. 3, (1996), pp. 285-288.; · Zbl 0857.03040 [23] A. Horn: “The separation theorem of intuitionistic propositional calculus”, J. Symb. Logic, Vol. 27, (1962), pp. 391-399. http://dx.doi.org/10.2307/2964545; · Zbl 0117.25302 [24] K. Iseki and S. Tanaka: “An introduction in the theory of BCK-algebras”, Math. Japon., Vol. 23, (1978), pp. 1-26.; · Zbl 0385.03051 [25] Y.B. Jun: “Deductive systems of Hilbert algebras”, Math. Japon., Vol. 42, (1996), pp. 51-54.; · Zbl 0844.03033 [26] Y.B. Jun: “Commutative Hilbert algebras”, Soochow J. Math., Vol. 22, (1996), pp. 477-484.; · Zbl 0864.03042 [27] T. Katriňák: “Pseudokomplementäre Halbverbande”, Mat. Časopis, Vol. 18, (1968), pp. 121-143.; · Zbl 0164.00701 [28] M. Kondo: “Hilbert algebras are dual isomorphic to positive implicative BCK-algebras”, Math. Japon., Vol. 49, (1999), pp. 265-268.; · Zbl 0930.06017 [29] M. Kondo: “(H)-Hilbert algebras are same as Hertz algebras”, Math. Japon., Vol. 50, (1999), pp. 195-200.; · Zbl 0937.03073 [30] E.L. Marsden: “Compatible elements in implicative models”, J. Philos. Logic, Vol. 1, (1972), pp. 156-161. http://dx.doi.org/10.1007/BF00650494; · Zbl 0259.02046 [31] E.L. Marsden: “A note on implicative models”, Notre Dame J. Formal Log., Vol. 14, (1973), pp. 139-144. http://dx.doi.org/10.1305/ndjfl/1093890823; · Zbl 0214.00804 [32] A. Monteiro: “Axiomes independants pour les algèbres de Brouwer”, Rev. Un. Mat. Argentina, Vol. 17, (1955), pp. 149-160.; · Zbl 0072.25004 [33] Y.S. Pawar: “Implicative posets”, Bull. Calcutta Math. Soc., Vol. 85, (1993), pp. 381-384.; · Zbl 0813.06001 [34] W.C. Nemitz: “On the lattice of filters of an implicative semi-lattice”, J. Math. Mech., Vol. 18, (1969), pp. 683-688.; · Zbl 0169.02101 [35] H. Rasiowa: An Algebraic Approach to Non-classical Logics, PWN, North-Holland, Warszawa, 1974.; · Zbl 0299.02069 [36] S. Rudeanu: “On relatively pseudocomplemented posets and Hilbert algebras”, An. Stiint. Univ. Iaşi, N. Ser., Ia, Suppl., Vol. 31, (1985), pp. 74-77.; · Zbl 0609.06009 [37] A. Torrens: “On the role of the polynomial (X → Y ) → Y in some implicative algebras”, Zeitschr. Log. Grundl. Math., Vol. 34, (1988), pp. 117-122.; · Zbl 0621.03043 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.