×

zbMATH — the first resource for mathematics

Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces. (English) Zbl 1125.30039
Let \(M_{g,n}(L_1,\dots,L_n)\) denote the moduli space of Riemann surfaces with \(n\) geodesic boundary components of lengths \(L_1,\dots,L_n\). This space carries a Weil-Petersson metric. The mapping-class group \(\mathrm{Mod}_{g,n}\) operates on it and the quotient has finite volume. The main goal of the present paper is to determine this volume. The author proves that this is given by a polynomial in \(L_1,\dots,L_n\) of total degree \(\leq 2(3g-3+n)\). Moreover if we write this as a polynomial in \(L_1/\pi,\dots,L_n/\pi\) then it is \(\pi^{6g-6+2n}\) times a polynomial with rational coefficients which can be computed explicitly. The author gives some examples. This generalizes results of S. Wolpert and P. Zograf.
This remarkable formula is based on an identity due to G. McShane [Invent. Math. 132, No. 3, 607–632 (1998; Zbl 0916.30039)] and of a generalization thereof, also proved in this paper. The formula is in a certain sense an integrated version of this identity.

MSC:
30F60 Teichmüller theory for Riemann surfaces
32G15 Moduli of Riemann surfaces, Teichmüller theory (complex-analytic aspects in several variables)
14H81 Relationships between algebraic curves and physics
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Basmajian, A.: The orthogonal spectrum of a hyperbolic manifold. Am. J. Math. 115, 1139–1159 (1993) · Zbl 0794.30032 · doi:10.2307/2375068
[2] Birman, J.S., Series, C.: Geodesics with bounded intersection number on surfaces are sparsely distributed. Topology 24, 217–225 (1985) · Zbl 0568.57006 · doi:10.1016/0040-9383(85)90056-4
[3] Bismut, J.-M., Labourie, F.: Symplectic geometry and the Verlinde formulas. In: Surveys in Differential Geometry: Differential Geometry Inspired by String Theory, vol. 5 of Surv. Differ. Geom., pp. 97–331. Boston, MA: Int. Press 1999
[4] Buser, P.: Geometry and Spectra of Compact Riemann Surfaces. Boston: Birkhäuser 1992 · Zbl 0770.53001
[5] Canary, R.D., Epstein, D.B.A., Green, P.: Notes on notes of Thurston. In: Analytical and Geometric Aspects of Hyperbolic Space, pp. 3–92. Cambridge :Cambridge University Press 1987 · Zbl 0612.57009
[6] Donaldson, S.: Gluing techniques in the cohomology of moduli spaces. In: Topological Methods in Modern Mathematics, pp. 137–170. Houston, TX: Publish or Perish 1993 · Zbl 0870.57039
[7] Goldman, W.: The symplectic nature of fundamental groups of surfaces. Adv. Math. 54, 200–225 (1984) · Zbl 0574.32032 · doi:10.1016/0001-8708(84)90040-9
[8] Harer, J.L., Penner, R.C.: Combinatorics of Train Tracks. Annals of Math. Studies, vol. 125. Princeton, NJ: Princeton University Press 1992 · Zbl 0765.57001
[9] Harris, J., Morrison, I.: Moduli of Curves. Graduate Texts in Mathematics, vol. 187. New York: Springer 1998 · Zbl 0913.14005
[10] Hocking, J., Young, G.: Topology. New York: Dover Publication 1988
[11] Imayoshi, Y., Taniguchi, M.: An Introduction to Teichmüller Spaces. Tokyo: Springer 1992 · Zbl 0754.30001
[12] Jeffrey, L., Kirwan, F.: Intersection theory on moduli spaces of holomorphic bundles of arbitrary rank on a Riemann surface. Ann. Math. (2) 148, 109–196 (1998) · Zbl 0949.14021 · doi:10.2307/120993
[13] Kaufmann, R., Manin, Y., Zagier, D.: Higher Weil-Petersson volumes of moduli spaces of stable n-pointed curves. Commun. Math. Phys. 181, 736–787 (1996) · Zbl 0890.14011 · doi:10.1007/BF02101297
[14] Kirwan, F.: Momentum maps and reduction in algebraic geometry. Differ. Geom. Appl. 9, 135–171 (1998) · Zbl 0955.37031 · doi:10.1016/S0926-2245(98)00020-5
[15] Kontsevich, M.: Intersection on the moduli space of curves and the matrix airy function. Commun. Math. Phys. 147, 1–23 (1992) · Zbl 0756.35081 · doi:10.1007/BF02099526
[16] Labourie, F., McShane, G.: Cross ratios and identities for higher Thurston theory. Preprint 2006 · Zbl 1182.30075
[17] Manin, Y., Zograf, P.: Invertible cohomological field theories and Weil-Petersson volumes. Ann. Inst. Fourier 50, 519–535 (2000) · Zbl 1001.14008
[18] McDuff, D.: Introduction to Symplectic Topology. Providence, RI: Am. Math. Soc. 1999 · Zbl 0978.53120
[19] McShane, G.: Simple geodesics and a series constant over Teichmüller space. Invent. Math. 132, 607–632 (1998) · Zbl 0916.30039 · doi:10.1007/s002220050235
[20] Mirzakhani, M.: Growth of the number of simple closed geodesics on a hyperbolic surface. To appear in Ann. Math. · Zbl 1177.37036
[21] Mirzakhani, M.: Weil-Petersson volumes and intersection theory on the moduli space of curves. To appear in J. Am. Math. Soc. · Zbl 1120.32008
[22] Nakanishi, T., Näätänen, M.: Areas of two-dimensional moduli spaces. Proc. Am. Math. Soc. 129, 3241–3252 (2001) · Zbl 0977.32012 · doi:10.1090/S0002-9939-01-06010-5
[23] Penner, R.: Weil-Petersson volumes. J. Differ. Geom. 35, 559–608 (1992) · Zbl 0768.32016
[24] Tan, S.P., Wong, Y., Zhang, Y.: Necessary and sufficient conditions for McShane’s identity and variations. Preprint 2004 · Zbl 1109.57011
[25] Tan, S.P., Wong, Y., Zhang, Y.: Generalizations of McShane’s identity to hyperbolic cone-surfaces. J. Differ. Geom. 72, 73–111 (2006) · Zbl 1097.53031
[26] Wolpert, S.: The Fenchel-Nielsen deformation. Ann. Math. 115, 501–528 (1982) · Zbl 0496.30039 · doi:10.2307/2007011
[27] Wolpert, S.: On the homology of the moduli space of stable curves. Ann. Math. (2) 118, 491–523 (1983) · Zbl 0575.14024 · doi:10.2307/2006980
[28] Zograf, P.: The Weil-Petersson volume of the moduli space of punctured spheres. In: Mapping Class Groups and Moduli Spaces of Riemann Surfaces. Contemp. Math., vol. 150, pp. 367–372. Providence, RI: Am. Math. Soc. 1993 · Zbl 0792.32016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.