Uniqueness results for nonlinear elliptic equations with a lower order term. (English) Zbl 1125.35343

Summary: We consider the functional \[ I(\lambda,u)= \tfrac12 \int_\Omega|\nabla u|^2-\lambda\log \biggl( \frac{1}{|\Omega|} \int_\Omega e^{it}\biggr), \quad u\in H_0^1(\Omega). \] When \(\lambda=8\pi N\) (\(N\) any positive integer), \(l(\lambda,\cdot)\) admits unbounded Palais-Smale sequences. To overcome this lack of compactness, we propose a new deformation lemma.


35J60 Nonlinear elliptic equations
35J25 Boundary value problems for second-order elliptic equations
Full Text: DOI


[1] Artola, M., Sur une classe de problèmes paraboliques quasi-linéaires, Boll. un. mat. ital., 5-B, 51-70, (1986) · Zbl 0605.35044
[2] Artola, M.; Tartar, L., Un résultat d’unicité pour une classe de problèmes paraboliques quasi-linéaires, Ricerche mat., 44, 409-420, (1995) · Zbl 0918.35068
[3] Barles, G.; Blanc, A.P.; Georgelin, C.; Kobylanski, M., Remarks on the maximum principle for nonlinear elliptic PDEs with quadratic growth conditions, Ann. scuola norm. sup. Pisa cl. sci., 28, 381-404, (1999) · Zbl 0940.35078
[4] Barles, G.; Murat, F., Uniqueness and the maximum principle for quasilinear elliptic equations with quadratic growth conditions, Arch. rational mech. anal., 133, 77-101, (1995) · Zbl 0859.35031
[5] Betta, M.F.; Mercaldo, A.; Murat, F.; Porzio, M.M., Uniqueness of renormalized solutions to nonlinear elliptic equations with a lower order term and right-hand side in \(L^1(\Omega)\), ESAIM control optim. calc. var., 8, 239-272, (2002), (special issue dedicated to the memory of Jacques-Louis Lions) · Zbl 1092.35032
[6] Betta, M.F.; Mercaldo, A.; Murat, F.; Porzio, M.M., Existence of renormalized solutions to nonlinear elliptic equations with a lower-order term and right-hand side a measure, J. math. pures appl., 82, 90-124, (2003)
[7] L. Boccardo, Uniqueness of solutions for some nonlinear Dirichlet problems, Proceedings of the Conference to Celebrate the 65th Birthday of M. Artola, Bordeaux, 1997, to appear.
[8] Boccardo, L.; Gallouët, T.; Murat, F., Unicité de la solution de certaines équations elliptiques non linéaires, C. R. acad. sci. Paris Sér. I, 315, 1159-1164, (1992) · Zbl 0789.35056
[9] Bottaro, G.; Marina, M.E., Problema di Dirichlet per equazioni ellittiche di tipo variazionale su insiemi non limitati, Boll. un. mat. ital., 8, 46-56, (1973) · Zbl 0291.35021
[10] Carrillo, J.; Chipot, M., On some nonlinear elliptic equations involving derivatives of nonlinearity, Proc. roy. soc. Edinburgh A, 100, 281-294, (1985) · Zbl 0586.35044
[11] Chipot, M.; Michaille, G., Uniqueness results and monotonicity properties for strongly nonlinear elliptic variational inequalities, Ann. scuola norm. sup. Pisa cl. sci., 22, 137-166, (1989) · Zbl 0699.35113
[12] Del Vecchio, T.; Porzio, M.M., Existence results for a class of non coercive Dirichlet problems, Ricerche mat., 44, 421-438, (1995) · Zbl 0925.35067
[13] Del Vecchio, T.; Posteraro, M.R., An existence result for nonlinear and noncoercive problems, Nonlinear anal., 31, 191-206, (1998) · Zbl 0911.35045
[14] Droniou, J., Non-coercive linear elliptic problems, Potential anal., 17, 181-203, (2002) · Zbl 1161.35362
[15] Leray, J.; Lions, J.-L., Quelques résultats de višik sur LES problèmes elliptiques non linéaires par LES méthodes de minty-Browder, Bull. soc. math. France, 93, 97-107, (1965) · Zbl 0132.10502
[16] J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod et Gauthier-Villars, Paris, 1969.
[17] Lopez-Pouso, O.; Porzio, M.M., Linear elliptic problems with mixed boundary conditions related to radiation heat transfer, Math. models methods appl. sci., 12, 541-565, (2002) · Zbl 1290.35060
[18] A. Mokrane, F. Murat, The Lewy-Stampacchia’s inequality for bilateral problems, Ricerche Mat. 53 (2004) 139-182. · Zbl 1121.35066
[19] Porretta, A., Uniqueness and homogenization for a class of operators in divergence form, Atti sem. mat. fis. univ. modena, 46, 915-936, (1998), (supplement dedicated to Professor C. Vinti) · Zbl 0914.35049
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.