zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Application of a homogeneous balance method to exact solutions of nonlinear equations in mathematical physics. (English) Zbl 1125.35401
Summary: The solitary wave solutions of the approximate equations for long water waves, the coupled KdV equations and the dispersive long wave equations in $2 + 1$ dimensions are constructed by using a homogeneous balance method.

35Q51Soliton-like equations
35Q53KdV-like (Korteweg-de Vries) equations
37K10Completely integrable systems, integrability tests, bi-Hamiltonian structures, hierarchies
35A35Theoretical approximation to solutions of PDE
Full Text: DOI EuDML
[1] Whitham, G. B.: Proc. R. Soc. A. 299, 6 (1967)
[2] Broer, L. T. F.: Appl. sci. Res.. 31, 377 (1975)
[3] Kupershmidt, B. A.: Comm. math. Phys.. 99, 51 (1985)
[4] Hirota, R.; Satsuma, J.: Phys. lett. A. 85, 407 (1981)
[5] Dodd, R.; Frody, A.: Phys. lett. A. 89, 168 (1982)
[6] Oevel, W.: Phys. lett. A. 94, 404 (1983)
[7] Lu, B. Q.: Phys. lett. A. 189, 25 (1994)
[8] Boiti, M.: Inverse probl.. 3, 371 (1987)
[9] Paquin, G.; Winternitz, P.: Physica D. 46, 122 (1990)
[10] Lou, S.: Phys. lett. A. 176, 96 (1993)
[11] Sachs, R. L.: Physica D. 30, 1 (1988)
[12] Wang, M.: Phys. lett. A. 199, 169 (1995)
[13] M. Wang, submitted to Phys. Lett. A.