Hegenbarth, Friedrich; Repovš, Dušan Applications of controlled surgery in dimension 4: examples. (English) Zbl 1125.57015 J. Math. Soc. Japan 58, No. 4, 1151-1162 (2006). Let \(M\) be the complement of a tubular neighborhood of a torus knot in \(S^3\), let \(B\) be the spine of \(M\), which is a compact \(2\)-dimensional polyhedron onto which \(M\) collapses, and consider the closed \(4\)-dimensional manifold \(X=\partial( M\times D^2)\). A main construction of this paper is a direct geometric verification that the natural map \(p: X\to B\) is \(UV^1\).The authors show how this result, together with E. K. Pedersen, F. Quinn, and A. Ranicki [Controlled surgery with trivial local fundamental groups. High-dimensional manifold topology. Proceedings of the school, ICTP, Trieste, Italy, May 21–June 8, 2001. River Edge, NJ: World Scientific. 421–426 (2003; Zbl 1050.57025)], implies that surgery theory works for \(X\).They also verify that if \(Y\) is a \(4\)-dimensional Poincaré complex with \(\pi_1Y=\pi_1F\) for some closed oriented aspherical surface \(F\) and the intersection form of \(Y\) is extended from \(\mathbb{Z}\), then \(Y\) is homotopy equivalent to a closed manifold \(M\) for which there is a \(UV^1\) map \(M\to F\). They conclude that surgery theory works for \(Y\). Reviewer: Bruce Hughes (Nashville) Cited in 2 Documents MSC: 57R67 Surgery obstructions, Wall groups 57N13 Topology of the Euclidean \(4\)-space, \(4\)-manifolds (MSC2010) Keywords:controlled surgery; surgery theory; good fundamental group Citations:Zbl 1050.57025 PDFBibTeX XMLCite \textit{F. Hegenbarth} and \textit{D. Repovš}, J. Math. Soc. Japan 58, No. 4, 1151--1162 (2006; Zbl 1125.57015) Full Text: DOI arXiv Euclid References: [1] J. L. Bryant, S. C. Ferry, W. Mio and S. Weinberger, Topology of homology manifolds, Ann. of Math. (2), 143 (1996), 435-467. · Zbl 0867.57016 · doi:10.2307/2118532 [2] S. Cappell, Mayer-Vietoris sequences in Hermitian K-theory, Batelle Inst. Conf. 1972, Lecture Notes in Math., 343 , Springer, New York, 478-507. · Zbl 0298.57021 [3] A. Cavicchioli, F. Hegenbarth and D. Repovš, Four-manifolds with surface fundamental groups, Trans. Amer. Math. Soc., 349 (1997), 4007-4019. · Zbl 0887.57026 · doi:10.1090/S0002-9947-97-01751-0 [4] R. J. Davermann, Decomposition of Manifolds, Academic Press, Orlando 1986. [5] M. H. Freedman, The topology of four-dimensional manifolds, J. Differential Geom., 17 (1982), 357-453. · Zbl 0528.57011 [6] M. H. Freedman and F. S. Quinn, Topology of \(4\)-Manifolds, Princeton Univ. Press, Princeton, N. J., 1990. [7] M. Freedman and P. Teichner, \(4\)-manifold topology: I. Subexponential groups, Invent. Math., 122 (1995), 509-529. · Zbl 0857.57017 · doi:10.1007/BF01231454 [8] M. Freedman and P. Teichner, \(4\)-manifold topology: II. Dwyer’s fibration and surgery kernels, Invent. Math., 122 (1995), 531-557. · Zbl 0857.57018 · doi:10.1007/BF01231455 [9] I. Hambleton and P. Teichner, A non-extended hermitian form over \(\bm{Z} [\bm{Z}]\), Manuscripta Math., 93 (1997), 435-442. · Zbl 0890.57034 · doi:10.1007/BF02677483 [10] F. Hegenbarth and S. Piccaretta, On Poincaré four-complexes with free fundamental groups, Hiroshima Math. J., 32 (2002), 145-154. · Zbl 1020.57006 [11] F. Hegenbarth, D. Repovš and F. Spaggiari, Connected sums of \(4\)-manifolds, Topology Appl., 146 -147 (2005), 209-225. · Zbl 1064.57021 · doi:10.1016/j.topol.2003.02.009 [12] V. Krushkal and R. Lee, Surgery on closed manifolds with free fundamental groups, Math. Proc. Cambridge Philos. Soc., 133 (2002), 305-310. · Zbl 1012.57047 · doi:10.1017/S0305004102006084 [13] V. Krushkal and F. Quinn, Subexponential groups in \(4\)-manifold topology, Geom. Topol., 4 (2000), 407-430. · Zbl 0954.57005 · doi:10.2140/gt.2000.4.407 [14] S. V. Matveev, Complexity of three-dimensional manifolds: Problems and results, Siberian Adv. Math., 13 :3 (2003), 95-103. · Zbl 1050.57019 [15] A. Nicas, Induction theorems for groups of homotopy manifold structures, Mem. Amer. Math. Soc., 267 (1982). · Zbl 0507.57018 · doi:10.1090/memo/0267 [16] E. K. Pedersen, F. Quinn and A. Ranicki, Controlled surgery with trivial local fundamental groups, Proc. School on High-Dimensional Manifold Topology, ICTP, Trieste 2001 (eds. T. Farrell and W. Lück), World Sci. Press, Singapore, 2003, pp.,421-426. · Zbl 1050.57025 · doi:10.1142/9789812704443_0018 [17] F. Quinn, A geometric formulation of surgery, Topology of Manifolds, Proc., 1969 Georgia Topology Conference, Markham Press, Chicago, 1970, pp.,500-511. · Zbl 0284.57020 [18] F. Quinn, Resolution of homology manifolds and the topological characterization of manifolds, Invent. Math., 72 (1983), 264-284. · Zbl 0555.57003 · doi:10.1007/BF01389323 [19] A. A. Ranicki, Algebraic L-theory and Topological Manifolds, Cambridge Univ. Press, Cambridge 1992. · Zbl 0767.57002 [20] A. A. Ranicki and M. Yamasaki, Controlled K-theory, Topology Appl., 61 (1995), 1-59. · Zbl 0835.57013 · doi:10.1016/0166-8641(94)00017-W [21] A. A. Ranicki and M. Yamasaki, Controlled L-theory, Exotic Homology Manifolds - Oberwolfach 2003 (eds. F.,S. Quinn and A. Ranicki), Geom. Topol. Monogr., 9 (2006), 105-153. · Zbl 1127.57014 [22] M. Yamasaki, Hyperbolic knots and 4-dimensional surgery, preprint, Okayama Science University. · Zbl 1151.57022 · doi:10.1142/9789812770967_0046 [23] C. T. C. Wall, Surgery on Compact Manifolds, Academic Press, New York, 1971. · Zbl 0231.57001 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.