Gan, Shixin; Chen, Pingyan On the limiting behavior of the maximum partial sums for arrays of rowwise NA random variables. (English) Zbl 1125.60027 Acta Math. Sci., Ser. B, Engl. Ed. 27, No. 2, 283-290 (2007). Summary: Let \( \{X_{ni}\), \(i \leq n\), \(i < \infty \}\) be an array of rowwise NA random variables and \(\{a_n, n \geq 1\}\) a sequence of constants with \( 0 < a_n \uparrow \infty\) . The limiting behavior of maximum partial sums \({\frac1{a_n}} \max_{1 \leqslant k \leqslant n} | \sum^k_{i=1}X_{ni}|\) is investigated and some new results are obtained. The results extend and improve the corresponding theorems of rowwise independent random variable arrays by T.-C. Hu and R. L. Taylor [Int. J. Math. Math. Sci. 20, No. 2, 375–382 (1997; Zbl 0883.60024)] and T.-C. Hu and H.-C. Chang [Soochow J. Math. 20, No. 4, 587–594 (1994; Zbl 0861.60014)]. Cited in 2 ReviewsCited in 10 Documents MSC: 60F15 Strong limit theorems 60G50 Sums of independent random variables; random walks Keywords:NA random variable; maximum partial sum; complete convergence; convergent in probability Citations:Zbl 0883.60024; Zbl 0861.60014 PDF BibTeX XML Cite \textit{S. Gan} and \textit{P. Chen}, Acta Math. Sci., Ser. B, Engl. Ed. 27, No. 2, 283--290 (2007; Zbl 1125.60027) Full Text: DOI