zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
A recursive algorithm for the inversion of matrices with circulant blocks. (English) Zbl 1125.65026
The authors focus on the development and investigation of a recursive algorithm for the inversion of matrices with circulant blocks. An algorithm and one illustrative numerical example is presented. They determine the computation complexity of the recursive inversion and compare its efficiency with the $LU$ decomposition method. They conclude their paper with several numerical results. These results exhibit the efficiency of the proposed method in terms of CPU time.

65F05Direct methods for linear systems and matrix inversion (numerical linear algebra)
Full Text: DOI
[1] Davis, P. J.: Circulant matrices. (1994)
[2] R.M. Gray, Toeplitz and circulant matrices: a review. Available from: <http://www-ee.stanford.edu/ gray/toeplitz.pdf>, 2005.
[3] Mayer, A.; Castiaux, A.; Vigneron, J. -P.: Electronic Green scattering with n-fold symmetry axis from block circulant matrices. Comput. phys. Commun. 109, 81-89 (1998) · Zbl 0938.81560
[4] Tsitsas, N. L.; Alivizatos, E. G.; Anastassiu, H. T.; Kaklamani, D. I.: Optimization of the method of auxiliary sources (MAS) for scattering by an infinite cylinder under oblique incidence. Electromagnetics 25, 39-54 (2005)
[5] N.L. Tsitsas, E.G. Alivizatos, H.T. Anastassiu, D.I. Kaklamani, Accuracy analysis of the method of auxiliary sources (MAS) for scattering from a two-layer dielectric circular cylinder, in: Antennas and Propagation Society International Symposium, 2005 IEEE vol. 3B, 3 -- 8 July 2005, pp. 356 -- 359.
[6] Rjasanow, S.: Effective algorithms with circulant-block matrices. Linear algebra appl. 202, 55-69 (1994) · Zbl 0804.65042
[7] Strang, G.: A proposal for Toeplitz matrix calculations. Stud. appl. Math. 74, 171-176 (1986) · Zbl 0621.65025
[8] Leviatan, Y.; Boag, A.: Analysis of electromagnetic scattering from dielectric cylinders using a multifilament current model. IEEE trans. Antennas propagat. 35, 1119-1127 (1987)
[9] Baker, J.; Hiergeist, F.; Trapp, G.: A recursive algorithm to invert multiblock circulant matrices. Kyungpook math. J. 28, 45-50 (1988) · Zbl 0671.65019
[10] Vescovo, R.: Inversion of block-circulant matrices and circular array approach. IEEE trans. Antennas propagat. 45, 1565-1567 (1997) · Zbl 0949.15006
[11] Madsen, N. K.: Cyclic odd -- even reduction for symmetric circulant matrices. Linear algebra appl. 51, 17-35 (1983) · Zbl 0525.65015
[12] Tsitsas, N. L.; Alivizatos, E. G.; Kalogeropoulos, G. H.: Analytic inversion of matrices with 2k$\times $2k circulant blocks. (2006) · Zbl 1108.65022
[13] G.W. Stewart, Matrix Algorithms, vol. I: Basic Decompositions, SIAM, Philadelphia, 1998. · Zbl 0910.65012
[14] Horn, R. A.; Johnson, C. R.: Matrix analysis. (1991) · Zbl 0729.15001
[15] Golub, G. H.; Van Loan, C. F.: Matrix computations. (1996) · Zbl 0865.65009
[16] Burden, R. L.; Faires, J. D.: Numerical analysis. (2001) · Zbl 0671.65001