zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Decrease properties of truncated correlation functions and analyticity properties for classical lattices and continuous systems. (English) Zbl 1125.82302
Summary: We present and discuss some physical hypotheses on the decrease of truncated correlation functions and we show that they imply the analyticity of the thermodynamic limits of the pressure and of all correlation functions with respect to the reciprocal temperature $\beta$ and the magnetic field $h$ (or the chemical potential $mu$) at all (real) points $(\beta_0, h_0)$ (or $(\beta_0, \mu_0)$) where they are supposed to hold. A decrease close to our hypotheses is derived in certain particular situations at the end.

82B05Classical equilibrium statistical mechanics (general)
82B20Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs
Full Text: DOI
[1] Lebowitz, J. L.: Commun. math. Phys.28 (4), 313--321 (1972). · doi:10.1007/BF01645632
[2] Ruelle, D.: Statistical mechanics, rigourous results, pp. 90--92. New York: Benjamin 1969.
[3] Ruelle, D.: Statistical mechanics, rigourous results, p. 100. New York: Benjamin 1969. · Zbl 0177.57301
[4] Iagolnitzer, D., Stapp, H. P.: Commun. math. Phys.14, 15--55 (1969); Iagolnitzer, D.: Introduction toS-matrix theory (to the published). · doi:10.1007/BF01645454
[5] Fisher, M. E.: Physical Rev.162, 475 (1967). · doi:10.1103/PhysRev.162.480
[6] Camp, W. J., Fisher, M. E.: Phys. Rev. B, August 1, (1972).
[7] Marinaro, M., Sewell, G. L.: Commun. math. Phys.24, 310 (1972). · doi:10.1007/BF01878479
[8] Minlos, R. A., Sinai, J. G.: Investigations of the spectra of some stochastic operators arising in the lattice gas models. Teor. i Matem. Fizika2 (2), 230 (1970) (russian).
[9] We owe the ideas of this subsection to D. Ruelle.
[10] We owe this elegant proof to C. Billionnet and C. DeCalan.
[11] Arguments about this point have been given to us by D. Ruelle.
[12] Lebowitz, J. L., Martin-Löf, A.: Commun. math. Phys.25, 276 (1972). · doi:10.1007/BF01877686
[13] Dobrushin, R. I.: Gibbsian random fields for lattice systems with pairwise interactions. Funktsional’. Analiz i Ego Prilozhen,2 (4), 31 (1968) (russian).
[14] Ruelle, D.: Statistical mechanics, rigourous results. New York: Benjamin 1969. · Zbl 0177.57301
[15] For Vitali’s theorem see for instance: Goluzin, G. M.: Geometrical theory of functions of a complex variable, p. 18. AMS, Providence, Rhode Island 1969.
[16] For Hartog’s theorem see for instance: Bochner, S., Martin, W. T.: Several complex variables. Princeton 1948, VII, 4, Th. 4. · Zbl 0041.05205
[17] Lebowitz, J. L., Penrose, O.: Commun. math. Phys.11, 99 (1968). · Zbl 0162.59002 · doi:10.1007/BF01645899
[18] See for instance Camp, W. J., Fisher, M. E.: Phys. Rev. B,6 (2), 946 (1972) where references to the transfer matrix formalism will be found. · doi:10.1103/PhysRevB.6.946