zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Some remarks on the location of zeroes of the partition function for lattice systems. (English) Zbl 1125.82311
Summary: We use techniques which generalize the Lee-Yang circle theorem to investigate the distribution of zeros of the partition function for various classes of classical lattice systems.

82B20Lattice systems (Ising, dimer, Potts, etc.) and systems on graphs
30C15Zeros of polynomials, etc. (one complex variable)
Full Text: DOI
[1] Abe, Y., Katsura, S.: Distribution of zeroes of the partition function in the complex temperature plane II. Progr. Theoret. Phys.43, 1402--1403 (1970). · doi:10.1143/PTP.43.1402
[2] Asano, T.: The rigorous theorems for the Heisenberg ferromagnets. J. Phys. Soc. Japan29, 350--359 (1970). · Zbl 1230.82052 · doi:10.1143/JPSJ.29.350
[3] Borchers, H. J.: Über die Vollständigkeit Lorentzinvarianter Felder in einer zeitartigen Röhre. Nuovo Cim.19, 787--796 (1961). · Zbl 0111.43204 · doi:10.1007/BF02733373
[4] Di Liberto’, F.: On the uniqueness of the equilibrium state for antiferromagnetic Ising spin system in the phase transition region. Preprint.
[5] Dobrushin, R. L.: The problem of uniqueness of a Gibbsian random field and the problem of phase transitions. Funkts. Anal. i Prilozh.2 (4), 44--57 (1968). · Zbl 0192.61702
[6] Epstein, H.: Thèse. A paraître.
[7] Fisher, M. E.: The nature of critical points, pp. 1--159 in Lectures in Theoretical Physics 7c. Boulder: University of Colorado Press 1964.
[8] Ginibre, J.: On some recent work of Dobrushin. In: Systèmes à un nombre infini de degrés de liberté, pp. 163--175. Colloque CNRS No. 181 (CNRS, Paris, 1970).
[9] Glaser, V., Bros, J.: L’enveloppe d’holomorphie de l’union de deux polycercles. Preprint, CERN 1961.
[10] Heilmann, O. J.: Location of the zeroes of the grand partition function of certain classes of lattice gases. Stud. in Appl. Math.50, 385 (1971).
[11] Heilmann, O. J., Lieb, E. H.: Theory of monomerdimer systems. Commun. math. Phys.25, 190--232 (1972). · Zbl 0228.05131 · doi:10.1007/BF01877590
[12] Lee, T. D., Yang, C. N.: Statistical theory of equations of state and phase translations. II. Lattice gas and Ising model. Phys. Rev.87, 410--419 (1952). · Zbl 0048.43401 · doi:10.1103/PhysRev.87.410
[13] Lieb, E. H., Ruelle, D.: A property of zeroes of the partition function for Ising spin systems. J. Math. Phys.13, 781--784 (1972). · doi:10.1063/1.1666051
[14] Miracle-Sole, S.: Private communication.
[15] Penrose, O., Elvey, J. S. N.: The Yang-Lee distribution of zeros for a classical one-dimensional fluid. J. Phys. A.1, 661--674 (1968). · doi:10.1088/0305-4470/1/6/305
[16] Polya, G., Szegö, G.: Aufgaben und Lehrsätze aus der Analysis, 2 Vol., 3rd ed. Berlin-Göttingen-Heidelberg: Springer 1964.
[17] Ruelle, D.: Extension of the Lee-Yang circle theorem. Phys. Rev. Letters26, 303--304 (1971). · doi:10.1103/PhysRevLett.26.303
[18] Runnels, L. K., Hubbard, J. B.: Applications of the Yang-Lee-Ruelle theory to hard-core lattice gases. J. Stat. Phys.6, 1--20 (1972). · doi:10.1007/BF01060198
[19] Suzuki, M., Fisher, M. E.: Zeros of the partition function for the Heisenberg and general Ising models. J. Math. Phys.12, 235--246 (1971). · doi:10.1063/1.1665583
[20] Yang, C. N., Lee, T. D.: Statistical theory of equations of state and phase transitions. I. Theory of condensation. Phys. Rev.87, 404--409 (1952). · Zbl 0048.43305 · doi:10.1103/PhysRev.87.404