zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
LMI characterization of fractional systems stability. (English) Zbl 1125.93051
Sabatier, J. (ed.) et al., Advances in fractional calculus. Theoretical developments and applications in physics and engineering. Dordrecht: Springer (ISBN 978-1-4020-6041-0/hbk; 978-1-4020-6042-7/e-book). 419-434 (2007).
Summary: The notions of linear matrix inequalities (LMI) and convexity are strongly related. However, with state-space representation of fractional systems, the stability domain for a fractional order $\nu$, $0<\nu< 1$, is not convex. The classical LMI stability conditions thus cannot be extended to fractional systems. In this paper, three LMI-based methods are used to characterize stability. The first uses the second Lyapunov method and provides a sufficient but nonnecessary condition. The second and new method provides a sufficient and necessary condition, and is based on a geometric analysis of the stability domain. The third method is more conventional but involves nonstrict LMI with a rank constraint. For the entire collection see [Zbl 1116.00014].

93D05Lyapunov and other classical stabilities of control systems
93D99Stability of control systems
26A33Fractional derivatives and integrals (real functions)
93B50Synthesis problems
Full Text: DOI