zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
An ISS small gain theorem for general networks. (English) Zbl 1125.93062
The paper deals with nonlinear dynamical system which consists of two or more input-to-state stability (ISS) subsystems. The aim is to obtain conditions for reduction the stability problem of the overall system to consideration of subsystems stability. The approach applies asymptotic gains and global stability to prove the ISS results for general interconnected system. The results proved generalize the known small gain theorems. Also the special case of linear gains is considered. In particular, it is shown that the small gain condition is closely connected with stability of a discrete time monotone dynamical system defined by use of gain matrix.

93D25Input-output approaches to stability of control systems
93C15Control systems governed by ODE
93C10Nonlinear control systems
93-01Textbooks (systems and control)
Full Text: DOI arXiv
[1] Angeli D, Sontag E (2004) Interconnections of monotone systems with steady-state characteristics. In: Optimal control, stabilization and nonsmooth analysis, Lecture Notes in Control and Inform. Sci., vol. 301. Springer, Berlin, pp 135--154 · Zbl 1259.93092
[2] Angeli D, De Leenheer P and Sontag ED (2004). A small-gain theorem for almost global convergence of monotone systems. Syst Control Lett 52(5): 407--414 · Zbl 1157.93499 · doi:10.1016/j.sysconle.2004.02.017
[3] Berman A and Plemmons RJ (1979). Nonnegative matrices in the mathematical sciences. Academic [Harcourt Brace Jovanovich Publishers], New York · Zbl 0484.15016
[4] Dashkovskiy S, Rüffer BS, Wirth FR (2006a) Construction of ISS Lyapunov functions for networks. Tech. Rep. 06-06, Zentrum für Technomathematik, University of Bremen, Technical Report
[5] Dashkovskiy S, Rüffer BS, Wirth FR (2006b) Discrete time monotone systems: Criteria for global asymptotic stability and applications. In: Proceedings of the 17th international symposium on mathematical theory of networks and systems (MTNS), Kyoto, Japan, pp 89--97
[6] Dashkovskiy S, Rüffer BS, Wirth FR (2006c) Explicit ISS Lyapunov functions for networks (in preparation)
[7] Dashkovskiy S, Rüffer BS, Wirth FR (2006d) An ISS Lyapunov function for networks of ISS systems. In: Proceedings of the 17th international symposium on mathematical theory of networks and systems (MTNS), Kyoto, Japan, pp 77--82
[8] Enciso GA and Sontag ED (2006). Global attractivity, I/O monotone small-gain theorems and biological delay systems. Discrete Contin Dyn Syst 14(3): 549--578 · Zbl 1111.93071
[9] Grüne L (2002). Input-to-state dynamical stability and its Lyapunov function characterization. IEEE Trans Automat Control 47(9): 1499--1504 · doi:10.1109/TAC.2002.802761
[10] Hahn W (1967). Stability of motion. Springer, New York · Zbl 0189.38503
[11] Horvath CD and Lassonde M (1997). Intersection of sets with n-connected unions. Proc Am Math Soc 125(4): 1209--1214 · Zbl 0861.54020 · doi:10.1090/S0002-9939-97-03622-8
[12] Jiang ZP and Wang Y (2001). Input-to-state stability for discrete-time nonlinear systems. Automatica J IFAC 37(6): 857--869 · Zbl 0989.93082 · doi:10.1016/S0005-1098(01)00028-0
[13] Jiang ZP, Teel AR and Praly L (1994). Small-gain theorem for ISS systems and applications. Math Control Signals Syst 7(2): 95--120 · Zbl 0836.93054 · doi:10.1007/BF01211469
[14] Jiang ZP, Mareels IMY and Wang Y (1996). A Lyapunov formulation of the nonlinear small-gain theorem for interconnected ISS systems. Automatica J IFAC 32(8): 1211--1215 · Zbl 0857.93089 · doi:10.1016/0005-1098(96)00051-9
[15] Jiang ZP, Lin Y and Wang Y (2004). Nonlinear small-gain theorems for discrete-time feedback systems and applications. Automatica J IFAC 40(12): 2129--2136 · Zbl 1077.93034 · doi:10.1016/S0005-1098(04)00216-X
[16] Karow M, Hinrichsen D and Pritchard AJ (2006). Interconnected systems with uncertain couplings: Explicit formulae for mu-values, spectral value sets, and stability radii. SIAM J Control Optim 45(3): 856--884 · Zbl 1118.15009 · doi:10.1137/050626508
[17] Laila DS and Nešić D (2003). Discrete-time Lyapunov-based small-gain theorem for parameterized interconnected ISS systems. IEEE Trans Automat Control 48(10): 1783--1788 · doi:10.1109/TAC.2003.817928
[18] Lancaster P and Tismenetsky M (1985). The theory of matrices 2nd edn. Academic, Orlando · Zbl 0558.15001
[19] Lur YY (2005). On the asymptotic stability of nonnegative matrices in max algebra. Linear Algebra Appl 407: 149--161 · Zbl 1086.15016 · doi:10.1016/j.laa.2005.05.017
[20] Michel AN and Miller RK (1977). Qualitative analysis of large scale dynamical systems. Academic [Harcourt Brace Jovanovich Publishers], New York · Zbl 0494.93002
[21] Potrykus HG, Allgöwer F, Qin SJ (2003) The character of an idempotent-analytic nonlinear small gain theorem. In: Positive systems (Rome, 2003), Lecture Notes in Control and Inform. Sci., vol 294. Springer, Berlin, pp 361--368 · Zbl 1059.93123
[22] Rouche N, Habets P and Laloy M (1977). Stability theory by Liapunov’s direct method. Springer, New York · Zbl 0364.34022
[23] Šiljak DD (1979). Large-scale dynamic systems, North-Holland series in system science and engineering, vol.$\sim$3. North-Holland Publishing Co., New York
[24] Sontag E and Teel A (1995). Changing supply functions in input/state stable systems. IEEE Trans Automat Control 40(8): 1476--1478 · Zbl 0832.93047 · doi:10.1109/9.402246
[25] Sontag ED (1989). Smooth stabilization implies coprime factorization. IEEE Trans Automat Control 34(4): 435--443 · Zbl 0682.93045 · doi:10.1109/9.28018
[26] Sontag ED (2001) The ISS philosophy as a unifying framework for stability-like behavior. In: Nonlinear control in the year 2000, vol. 2 (Paris), Lecture Notes in Control and Inform. Sci., vol 259. Springer, London, pp 443--467 · Zbl 0989.93083
[27] Sontag ED and Wang Y (1996). New characterizations of input-to-state stability. IEEE Trans Automat Control 41(9): 1283--1294 · Zbl 0862.93051 · doi:10.1109/9.536498
[28] Szász G (1963) Introduction to lattice theory. Third revised and enlarged edition. MS revised by R. Wiegandt; translated by B. Balkay and G. Tóth, Academic, New York
[29] Teel AR (1996). A nonlinear small gain theorem for the analysis of control systems with saturation. IEEE Trans Automat Control 41(9): 1256--1270 · Zbl 0863.93073 · doi:10.1109/9.536496
[30] Teel AR (1998). Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem. IEEE Trans Automat Control 43(7): 960--964 · Zbl 0952.93121 · doi:10.1109/9.701099
[31] Teel AR (2005) Input-to-state stability and the nonlinear small gain theorem, private communication, 2005
[32] Vidyasagar M (1981) Input-output analysis of large-scale interconnected systems, Lecture Notes in Control and Information Sciences, vol. 29. Springer, Berlin · Zbl 0454.93002