×

Design of the low-order controllers by the \(H_{\infty }\) criterion: a parametric approach. (English. Russian original) Zbl 1125.93343

Autom. Remote Control 68, No. 3, 456-466 (2007); translation from Avtom. Telemekh. 68, No. 3, 94-105 (2007).
Summary: Consideration was given to the problem of describing all stabilizing controllers of a given structure (for example, the PID-controllers) satisfying the \(H_{\infty }\) criterion. Controllers of a certain family were defined by the parameters \(k\), and in the parameter space a domain corresponding to the desired criteria was specified. Two approaches were proposed where (i) the desired domain is represented as an intersection of the admissible sets or (ii) its boundary is determined analytically. The two-parameter case is of special importance because it allows one to make use of the graphical mathematics.

MSC:

93B36 \(H^\infty\)-control
93D99 Stability of control systems
93B51 Design techniques (robust design, computer-aided design, etc.)
Full Text: DOI

References:

[1] Bhattacharyya, S.P., Chapellat, H., and Keel, L.H., Robust Control: The Parametric Approach, Upper Saddle River: Prentice Hall, 1995. · Zbl 0838.93008
[2] Polyak, B.T. and Shcherbakov, P.S., Robastnaya ustoichivost’ i upravlenie (Robust Stability and Control), Moscow: Nauka, 2002.
[3] Gorovits, I., Sintez sistem s obratnoi svyaz’yu (Design of Feedback Systems), Moscow: Sovetskoe Radio, 1970.
[4] Francis, B.A., A Course in H Control Theory, New York: Springer, 1987. · Zbl 0624.93003
[5] Zhou, K., Doyle, J.C., and Glover, K., Robust and Optimal Control, Upper Saddle River: Prentice Hall, 1996. · Zbl 0999.49500
[6] Åström, K.J. and Hägglund, T., Advanced PID Control, Instrumentation, Systems, and Automation Society, Research Triangle Park, 2006.
[7] Rotach, V.Ya., Teoriya avtomaticheskogo upravleniya (Automatic Control Theory), Moscow: Mosk. Energ. Inst., 2004.
[8] Datta, A., Ho, M.T., and Bhattacharyya, S.P., Structure and Synthesis of PID Controllers, New York: Springer, 2002. · Zbl 1092.93500
[9] Kiselev, O.N. and Polyak, B.T., Synthesis of Low-order Controllers by the H and Maximal-robustness Criteria, Avtom. Telemekh., 1999, no. 3, pp. 119–130. · Zbl 1273.93064
[10] Keel, L. and Bhattacharyya, S.P., Robust, Fragile or Optimal? IEEE Trans. Automat. Control, 1997, vol. 42, no. 6, pp. 1098–1105. · Zbl 0900.93075 · doi:10.1109/9.618239
[11] Neimark, Yu.I., Dinamicheskie sistemy i upravlyaemye protsessy (Dynamic Systems and Controllable Processes), Moscow: Nauka, 1978. · Zbl 0509.93001
[12] Gryazina, E.N. and Polyak, B.T., Stability Regions in the Parameter Space: D-decomposition Revisited, Automatica, 2006, vol. 42, no. 1, pp. 13–26. · Zbl 1121.93028 · doi:10.1016/j.automatica.2005.08.010
[13] Åström, K.J., Panagopoulos, H., and Hägglund, T., Design of PI Controllers Based on Non-convex Optimization, Automatica, 1998, vol. 34, no. 5, pp. 585–601. · Zbl 0942.93009 · doi:10.1016/S0005-1098(98)00011-9
[14] Panagopoulos, H., Åström, K.J., and Hägglund, T., Design of PID Controllers based on Constrained Optimization, Proc. Am. Control Conf., 1999, pp. 3858–3862.
[15] Panagopoulos, H. and Åström, K.J., PID Control Design and H Loop Shaping, Int. J. Robust Nonlinear Control, 2000, vol. 10, no. 15, pp. 1249–1261. · Zbl 0984.93027 · doi:10.1002/1099-1239(20001230)10:15<1249::AID-RNC514>3.0.CO;2-7
[16] Ho, M.T., Synthesis of H PID Controllers: A Parametric Approach, Automatica, 2003, vol. 39, pp. 1069–1075. · Zbl 1035.93023 · doi:10.1016/S0005-1098(03)00078-5
[17] Ho, M.T. and Lin, C.Y., PID Controller Design for Robust Performance, IEEE Trans. Automat. Control, 2003, vol. 48, no. 8, pp. 1404–1409. · Zbl 1364.93278 · doi:10.1109/TAC.2003.815028
[18] Keel, L.H. and Bhattacharyya, S.P., H Design with First Order Controllers, Proc. 42nd CDC, 2003, pp. 2282–2287.
[19] Fujisaki, Y., Oishi, Y., and Tempo, R., A Mixed Probabilistic Deterministic Approach to Fixed Order H Controller Design, Proc. 45th CDC, 2006. · Zbl 1367.93228
[20] Horowitz, I., Survey on Qualitative Feedback Theory (QFT), Int. J. Control, 1991, no. 53, pp. 255–291. · Zbl 0733.93024
[21] Blanchini, F., Lepschy, A., Miani, S., and Viaro, U., Characterization of PID and Lead/Lag Compensators Satisfying Given H Specifications, IEEE Trans. Automat. Control, 2004, vol. 49, no. 5, pp. 736–740. · Zbl 1365.93169 · doi:10.1109/TAC.2004.825961
[22] Tremba, A.A., Robust D-decomposition under l p -bounded Parametric Uncertainties, Avtom. Telemekh., 2006, no. 12, pp. 21–36. · Zbl 1195.93116
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.