Pseudo-Paley graphs and skew Hadamard difference sets from presemifields. (English) Zbl 1126.05026

Summary: Let \((K,+,*)\) be an odd order presemifield with commutative multiplication. We show that the set of nonzero squares of \((K,*)\) is a skew Hadamard difference set or a Paley type partial difference set in \((K,+)\) according as \(q\) is congruent to 3 modulo 4 or \(q\) is congruent to 1 modulo 4. Applying this result to the Coulter-Matthews presemifield and the Ding-Yuan variation of it, we recover a recent construction of skew Hadamard difference sets by Ding and Yuan. On the other hand, applying this result to the known presemifields with commutative multiplication and having order \(q\) congruent to 1 modulo 4, we construct several families of pseudo-Paley graphs. We compute the \(p\)-ranks of these pseudo-Paley graphs when \(q = 3^4\), \(3^6\), \(3^8\), \(3^{10}\), \(5^4\), and \(7^4\). The \(p\)-rank results indicate that these graphs seem to be new. Along the way, we also disprove a conjecture of René Peeters which says that the Paley graphs of nonprime order are uniquely determined by their parameters and the minimality of their relevant \(p\)-ranks.


05B10 Combinatorial aspects of difference sets (number-theoretic, group-theoretic, etc.)
05B25 Combinatorial aspects of finite geometries
17A35 Nonassociative division algebras
Full Text: DOI


[1] Assmus EF Jr, Key JD (1992) Designs and their codes. Cambridge tracts in Mathematics 103, Cambridge U.P., Cambridge
[2] Brouwer AE, van Eijl CA (1992) On the p-rank of the adjacency matrices of strongly regular graphs. J Algebraic Combin 1:329–346 · Zbl 0780.05039 · doi:10.1023/A:1022438616684
[3] Chen YQ, Xiang Q, Sehgal SK (1994) An exponent bound on skew Hadamard abelian difference sets. Des Codes Cryptogr 4:313–317 · Zbl 0807.05012 · doi:10.1007/BF01388647
[4] Coulter RS, Matthews RW (1997) Planar functions and planes of Lenz-Barlotti class II. Des Codes Cryptogr 10:167–184 · Zbl 0872.51007 · doi:10.1023/A:1008292303803
[5] Dembowski P, Ostrom TG (1968) Planes of order n with collineation groups of order n 2. Math Z 103:239–258 · Zbl 0163.42402 · doi:10.1007/BF01111042
[6] Dembowski P (1997) Finite geometries. Reprint of the 1968 original. Classics in mathematics. Springer, Berlin
[7] Ding CS, Yuan J (2006) A family of skew Hadamard difference set. J Combin Theory (A) 113:1526–1535 · Zbl 1106.05016 · doi:10.1016/j.jcta.2005.10.006
[8] Ding CS, Wang ZY, Xiang Q Skew Hadamard difference sets from the Ree-Tits slice symplectic spreads in PG(3,32h+1). J Combin Theory (A), in press
[9] Ghinelli D, Jungnickel D (2006) Some geometric aspects of finite abelian groups. Rend Mat Ser VII 26:29–68 · Zbl 1102.51006
[10] Heinze HA (2001) Applications of Schur rings in algebraic combinatorics: graphs, partial difference sets and cyclotomy scheme, Ph.D. thesis, University of Oldenburg, Germany · Zbl 0978.05077
[11] Hughes DR (1956) Partial difference sets. Amer J Math 78:650–674 · Zbl 0072.38101 · doi:10.2307/2372676
[12] Kantor WM (2006) Finite semifields. In: Finite geometries, groups, and computation (Proc. of Conf. at Pingree Park, CO Sept. 2005), de Gruyter, Berlin, New York, pp 103–114 · Zbl 1102.51001
[13] Lucas ME (1878) Sur les congruences des nombres eulériens, et des coefficients différentiels des fonctions trigonométriques, suivant un module premier. Bull Soc Math France 6:49–54
[14] Ma SL (1994) A survey of partial difference sets. Des Codes Cryptogr 4:221–261 · Zbl 0798.05008 · doi:10.1007/BF01388454
[15] Mathon R (1988) On self-complementary strongly regular graphs. Discrete Math 69:263–281 · Zbl 0643.05037 · doi:10.1016/0012-365X(88)90055-6
[16] Peeters R (1995) Uniqueness of strongly regular graphs having minimal p-rank. Linear Algebra Appl 226/228:9–31 · Zbl 0831.05066 · doi:10.1016/0024-3795(95)00184-S
[17] Peeters R (1995) Ranks and structure of graphs. Ph.D. thesis, Tilburg University · Zbl 0820.05062
[18] Peisert W (2001) All self-complementary symmetric graphs. J Algebra 240:209–229 · Zbl 1021.05051 · doi:10.1006/jabr.2000.8714
[19] Xiang Q (2005) Recent progress in algebraic design theory. Finite Fields Appl 11:622–653 · Zbl 1070.05020 · doi:10.1016/j.ffa.2005.06.003
[20] Xiang Q (1996) Note on Paley type partial difference sets, Groups, difference sets, and the Monster (Columbus, OH, 1993). Ohio State Univ. Math. Res. Inst. Publ., 4, de Gruyter, Berlin, pp 239–244
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.