zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Perfect matchings extend to Hamilton cycles in hypercubes. (English) Zbl 1126.05080
Summary: Kreweras’ conjecture [{\it G. Kreweras}, Bull. Inst. Comb. Appl. 16, 87--91 (1996; Zbl 0855.05089)] asserts that any perfect matching of the hypercube $Q_{d}$, $d\geqslant 2$, can be extended to a Hamilton cycle. We prove this conjecture.

05C70Factorization, etc.
05C45Eulerian and Hamiltonian graphs
Full Text: DOI
[1] Kreweras, G.: Matchings and Hamiltonian cycles on hypercubes. Bull. inst. Combin. appl. 16, 87-91 (1996) · Zbl 0855.05089
[2] Savage, C.: A survey of combinatorial gray codes. SIAM rev. 39, 605-629 (1997) · Zbl 1049.94513
[3] Gros, L.: Théorie du baguenodier. (1872)
[4] Dvořák, T.: Hamiltonian cycles with prescribed edges in hypercubes. SIAM J. Discrete math. 19, 135-144 (2005) · Zbl 1082.05056
[5] D. Dimitrov, R. Škrekovski, T. Dvořák, P. Gregor, Gray Codes Faulting Matchings, manuscript
[6] R. Škrekovski, private communication