×

On a combinatorial problem of Asmus Schmidt. (English) Zbl 1126.11012

Summary: For any integer \(r\geq 2\), define a sequence of numbers \(\{c^{(r)}_k\}_{k=0,1,\dots}\), independent of the parameter \(n\), by \[ \sum^n_{k=0}\binom nk^r\binom{n+k}{k}^r=\sum^n_{k=0}\binom nk\binom{n+k}{k}c^{(r)}_k,\quad n=0,1,2,\dots. \] We prove that all the numbers \(c^{(r)}_k\) are integers.

MSC:

11B65 Binomial coefficients; factorials; \(q\)-identities
05A19 Combinatorial identities, bijective combinatorics
PDF BibTeX XML Cite
Full Text: arXiv EuDML EMIS

Online Encyclopedia of Integer Sequences:

Array read by antidiagonals: Solutions to Schmidt’s Problem.