zbMATH — the first resource for mathematics

Examples
Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

Operators
a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
Fields
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Rectifiable and unrectifiable oscillations for a class of second-order linear differential equations of Euler type. (English) Zbl 1126.34023
The paper deals with a new kind of oscillations, so-called rectifiable and unrectifiable oscillations. Besides the linear differential equations of Euler type $$y''+\frac{\lambda}{x^{\alpha}}y=0\text{ on }I=(0,b),\tag1$$ where $\lambda,\alpha,b\in\Bbb R$, $\lambda>0$, $\alpha\geq 2$, $b>0$; two boundary-layer conditions are separately considered: there are $c>0$ and $d\in I$ both depending on $y$ such that $$ \align \vert y'(t)\vert&\leq\frac{c}{x^{\alpha/4}}\quad\text{for all}\quad x\in(0,d), \tag"(2)"\\ \vert y(t)\vert&\leq cx^{\alpha/4}\quad\text{for all}\quad x\in(0,d). \tag"(3)" \endalign $$ The author presents sufficient conditions for the problem (1), (2) and/or the problem (1), (3) to be rectifiable (unrectifiable) oscillatory on $I$.

MSC:
34C10Qualitative theory of oscillations of ODE: zeros, disconjugacy and comparison theory
34A30Linear ODE and systems, general
WorldCat.org
Full Text: DOI
References:
[1] Billingham, J.; King, A. C.; Otto, S. R.: Differential equations: linear, nonlinear, ordinary, partial. (2003) · Zbl 1034.34001
[2] Falconer, K.: Fractal geometry. Mathematical fondations and applications. (1999) · Zbl 0869.28003
[3] Huang, C.: Oscillation and nonoscillation for second order linear differential equations. J. math. Anal. appl. 210, 712-723 (1997) · Zbl 0880.34034
[4] Korkut, L.; Pašić, M.; Žubrinić, D.: Some qualitative properties of solutions of quasilinear elliptic equations and applications. J. differential equations 170, 247-280 (2001) · Zbl 0979.35051
[5] Mattila, P.: Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability. (1995) · Zbl 0819.28004
[6] Naito, J.; Usami, H.: Oscillation criteria for quasilinear elliptic equations. Nonlinear anal. 46, 629-652 (2001) · Zbl 1126.35321
[7] Nehari, Z.: Oscillation criteria for second order linear differential equations. Trans. amer. Math. soc. 85, 428-445 (1957) · Zbl 0078.07602
[8] O’regan, D.: Existence theory for nonlinear ordinary differential equations. (1997)
[9] Pašić, M.: Isoperimetric inequalities in quasilinear elliptic equations of Leray -- lions type. J. math. Pures appl. 75, 343-366 (1996) · Zbl 0859.35028
[10] Pašić, M.: Minkowski -- bouligand dimension of solutions of the one-dimensional p-Laplacian. J. differential equations 190, 268-305 (2003) · Zbl 1054.34034
[11] Pašić, M.: Rectifiability of solutions of the one-dimensional p-Laplacian. Electron. J. Differential equations 46, 1-8 (2005)
[12] M. Pašić, Fractal oscillations for a class of second order linear differential equations of Euler type, submitted for publication
[13] Peitgen, H. O.; J&udblac, H.; Rgens; Saupe, D.: Chaos and fractals. New frontiers of science. (1992) · Zbl 0779.58004
[14] Rakotoson, J. M.; Ziemer, W. P.: Local behavior of solutions of quasilinear elliptic equations with general structure. Trans. amer. Math. soc. 319, 747-764 (1990) · Zbl 0708.35023
[15] Sugie, J.; Yamaoka, N.: Oscillation of solutions of second-order nonlinear self-adjoint differential equations. J. math. Anal. appl. 291, 387-405 (2004) · Zbl 1055.34068
[16] Swanson, C. A.: Comparison and oscillation theory of linear differential equations. (1968) · Zbl 0191.09904
[17] Tricot, C.: Curves and fractal dimension. (1995) · Zbl 0847.28004
[18] Wong, J. S. W.: On second order nonlinear oscillation. Funkcial. ekvac. 11, 207-234 (1968) · Zbl 0184.12202
[19] Wong, J. S. W.: Oscillation theorems for second order nonlinear differential equations of Euler type. Methods appl. Anal. 3, 476-485 (1996) · Zbl 0946.34028
[20] Wong, J. S. W.: Oscillation criteria for a forced second order linear differential equations. J. math. Anal. appl. 231, 235-240 (1999) · Zbl 0922.34029