Xia, Yonghui; Cao, Jinde; Han, Maoan A new analytical method for the linearization of dynamic equation on measure chains. (English) Zbl 1126.34030 J. Differ. Equations 235, No. 2, 527-543 (2007). The authors deal with dynamical systems on measure chains (time scales). Such systems (their definition is too complicated to be given here; see, for example, the book by M. Bohner and A. Peterson [Dynamic equations on time scales. An introduction with applications. Basel: Birkhäuser (2001; Zbl 0978.39001)] are generalizations of ordinary differential equations. In this paper, the authors introduce a new method for establishing topological equivalence on measure chains between a nonlinear system and its linear part. Reviewer: Sergei Yu. Pilyugin (St. Petersburg) Cited in 2 ReviewsCited in 28 Documents MSC: 34C41 Equivalence and asymptotic equivalence of ordinary differential equations 39A12 Discrete version of topics in analysis Keywords:measure chains; exponential dichotomy; linearization Citations:Zbl 0978.39001 PDF BibTeX XML Cite \textit{Y. Xia} et al., J. Differ. Equations 235, No. 2, 527--543 (2007; Zbl 1126.34030) Full Text: DOI OpenURL References: [1] Agarwal, R.P.; Bohner, M., Basic calculus on time scales and some of its applications, Results math., 35, 3-22, (1999) · Zbl 0927.39003 [2] Agarwal, R.P.; Bohner, M.; O’Regan, D., Dynamic equations on time scales: A survey, J. comput. appl. math., 141, 1-2, 1-26, (2002) · Zbl 1020.39008 [3] Bohner, M.; Guseinov, G.; Peterson, A., Introduction to the time scales calculus, advances in dynamic equations on time scales, (2003), Birkhäuser Boston, MA [4] Bohner, M.; Peterson, A., Dynamic equations on time scales, an introduction with applications, (2001), Birkhäuser Boston · Zbl 0978.39001 [5] Cao, J.; Li, Q.; Wan, S., Periodic solutions of the higher dimensional non-autonomous system, Appl. math. comput., 130, 2-3, 369-383, (2002) [6] Copple, W.A., Dichotomies in stability theory, (1978), Springer-Verlag Berlin [7] Erbe, L.H.; Peterson, A., Green functions and comparison theorems for differential equations on measure chains, Dyn. contin. discrete impuls. syst., 6, 121-137, (1999) · Zbl 0938.34027 [8] Erbe, L.; Hilger, S., Sturmain theory on measure chains, Differential equations dynam. systems, 1, 223-246, (1993) [9] Hale, J.K., Ordinary differential equations, (1969), Wiley-Interscience · Zbl 0186.40901 [10] Hale, J.K.; Verduyn Lunel, S.M., Introduction to functional differential equations, (1993), Springer-Verlag New York · Zbl 0787.34002 [11] Hartman, P., On the local linearization of differential equations, Proc. amer. math. soc., 14, 568-573, (1963) · Zbl 0115.29801 [12] S. Hilger, Ein Maßkettenkalkül mit Anwendung auf Zentrumsmannigfaltigkeiten, Dissertation, Univ. Würzburg, 1988 [13] Hilger, S., Analysis on measure chains a unified approach to continuous and discrete calculus, Results math., 18, 18-56, (1990) · Zbl 0722.39001 [14] Hilger, S., Generalized theorem of hartman – grobman on measure chains, J. aust. math. soc. ser. A, 60, 2, 157-191, (1996) · Zbl 0853.39007 [15] Hilger, S., Smooth of invariant manifolds, J. funct. anal., 106, 95-129, (1996) [16] Kaymakalan, B.; Lawrence, B.A., Coupled solutions and monotone iterative techniques for some nonlinear initial value problems on time scales, Nonlinear anal. real world appl., 2, 245-259, (2003) · Zbl 1037.34003 [17] Kirchgraber, U.; Palmer, K.J., Geometry in the neighborhood of an invariant manifolds of maps and flows and linearization, (1991), Pitman London · Zbl 0746.58008 [18] Lakshmikantham, V.; Sivasundaram, S.; Kaymakçalan, B., Dynamic systems on measure chains, Mathematics and its applications, vol. 370, (1996), Kluwer Academic Dordrecht · Zbl 0869.34039 [19] C. Pötzsche, Langsame Faserbündel Dynamischer Gleichungen auf Maßketten, PhD thesis, Logos Verlag, Berlin, 2002 · Zbl 1198.37024 [20] Pötzche, C., Exponential dichotomies of linear dynamic equations on measure chains under slowly varying coefficients, J. math. anal. appl., 289, 317-335, (2004) [21] Pötzsche, C., Exponential dichotomies for linear dynamic equations, Nonlinear anal., 47, 873-884, (2001) · Zbl 1042.34510 [22] Palmer, K.J., A generalization of Hartman’s linearization theorem, J. math. anal. appl., 41, 753-758, (1973) · Zbl 0272.34056 [23] Shi, J.; Zhang, J., Classification of the differential equations, (2003), Science Press Beijing [24] Xia, Y.H.; Cao, J., Almost periodicity in an ecological mode with M-predators and N-preys by “pure-delay type” system, Nonlinear dynam., 39, 3, 275-304, (2005) · Zbl 1093.92061 [25] Y.H. Xia, J. Cao, Almost periodic solutions for an ecological model with infinite delays, Proc. Edinb. Math. Soc., in press · Zbl 1130.34044 [26] Xia, Y.H.; Lin, M.; Cao, J., The existence of almost periodic solutions of certain perturbation system, J. math. anal. appl., 310, 1, 81-96, (2005) · Zbl 1089.34039 [27] Yoshizawa, T., Stability theory for the existence of periodic solutions and almost-periodic solutions, Applied mathematical sciences, vol. 14, (1975), Springer-Verlag New York · Zbl 0304.34051 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.