zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Convergence theorems of iterative algorithms for continuous pseudocontractive mappings. (English) Zbl 1126.47054
In the setting of a reflexive and strictly convex Banach sapce with a uniformly Gâteaux differentiable norm, the autors discuss the convergence of the viscosity iteration process to a solution of the following variational inequality problem: find $x^*\in F(T)$ such that $$\langle (f(x^*)-x^*,j(x-x^*)\rangle\le 0\quad\forall x\in F(T),$$ where $j$ is the normlized dual mapping, $f$ is a Lipschitz strongly pseudoconstractive mapping, and $F(T)$ is the fixed point set of a continuous pseudocontractive mapping. The authors also discuss the convergence of a modified implicit iteration to solve the above problem.

47J25Iterative procedures (nonlinear operator equations)
47H05Monotone operators (with respect to duality) and generalizations
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
Full Text: DOI
[1] Reich, S.: An iterative procedure for constructing zeros of accretive sets in Banach spaces. Nonlinear anal. 2, 85-92 (1978) · Zbl 0375.47032
[2] Xu, H. -K.; Ori, R. G.: An implicit iteration process for nonexpansive mappings. Numer. funct. Anal. optim. 22, 767-773 (2001) · Zbl 0999.47043
[3] Chen, R.; Song, Y.; Zhou, H. Y.: Convergence theorems for implicit iteration process for a finite family of continuous pseudocontractive mappings. J. math. Anal. appl., 701-709 (2006) · Zbl 1086.47046
[4] Takahashi, W.: Nonlinear functional analysis -- fixed point theory and its applications. (2000) · Zbl 0997.47002
[5] Takahashi, W.; Ueda, Y.: On reich’s strong convergence for resolvents of accretive operators. J. math. Anal. appl. 104, 546-553 (1984) · Zbl 0599.47084
[6] Kim, T. -H.; Xu, H. -K.: Strong convergence of modified Mann iterations. Nonlinear anal. 61, 51-60 (2005) · Zbl 1091.47055
[7] Xu, H. -K.: Viscosity approximation methods for nonexpansive mappings. J. math. Anal. appl. 298, 279-291 (2004) · Zbl 1061.47060
[8] Xu, H. -K.: An iterative approach to quadratic optimization. J. optim. Theory appl. 116, 659-678 (2003) · Zbl 1043.90063
[9] Deimling, K.: Zero of accretive operators. Manuscripta math. 13, 365-374 (1974) · Zbl 0288.47047
[10] Martin, R. H.: Differential equations on closed subsets of a Banach space. Trans. amer. Math. soc. 179, 399-414 (1973) · Zbl 0293.34092
[11] Megginson, R. E.: An introduction to Banach space theory. (1998) · Zbl 0910.46008