×

zbMATH — the first resource for mathematics

Some algebraic properties of Cerf diagrams of one-parameter function families. (English. Russian original) Zbl 1126.57014
Funct. Anal. Appl. 39, No. 3, 165-174 (2005); translation from Funkts. Anal. Prilozh. 39, No. 3, 1-13 (2005).
Summary: We obtain results concerning Arnold’s problem about a generalization of the Pontryagin-Thom construction in cobordism theory to real algebraic functions. The Pontryagin-Thom construction in the Wells form is transferred to the space of real functions. The relation of the problem with algebraic \(K\)-theory and the \(h\)-principle due to Eliashberg and Mishachev is revealed.
MSC:
57R90 Other types of cobordism
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] V. I. Arnold, ”Spaces of functions with moderate singularities,” Funkts. Anal. Prilozhen., 23, No.3, 1–10 (1989). · Zbl 0709.49014 · doi:10.1007/BF01078568
[2] V. I. Arnold, Arnold Problems [in Russian], Fazis, Moscow, 2000.
[3] P. M. Akhmet’ev, ”Embeddings of compacta, stable homotopy groups of spheres, and singularity theory,” Uspekhi Mat. Nauk, 55, No.3, 3–62 (2000).
[4] P. M. Akhmet’ev, ”K 2 for simple integral group rings and topological applications,” Mat. Sb., 194, No.1, 23–30 (2003).
[5] P. M. Akhmetiev, ”Pontrjagin-Thom construction for approximation of mappings by embeddings,” Topology Appl., 140, No.2–3, 133–149 (2004). · Zbl 1059.57021 · doi:10.1016/j.topol.2003.07.015
[6] J. Cerf, ”La stratification naturelle des espaces de fonctions differentiables reelles et le theoreme de la pseudo-isotopie,” Publ. Math. Inst. Hautes Etudes Sci., 39, 5–173 (1970). · Zbl 0213.25202 · doi:10.1007/BF02684687
[7] Y. Eliashberg and N. M. Mishachev, ”Wrinkling of smooth mappings and its applications. I,” Invent. Math., 130, No.2, 345–369 (1997). · Zbl 0896.58010 · doi:10.1007/s002220050188
[8] Y. Eliashberg and N. M. Mishachev, ”Wrinkling of smooth mappings. II. Wrinkling of embeddings and K. Igusa’s theorem,” Topology, 39, No.4, 711–732 (2000). · Zbl 0964.58028 · doi:10.1016/S0040-9383(99)00029-4
[9] Y. Eliashberg and N. M. Mishachev, Introduction to the h-Principle, Grad. Stud. Math., Vol. 48, Amer. Math. Soc., Providence, RI, 2002. · Zbl 1334.57030
[10] A. Hatcher and J. Wagoner, ”Pseudo-isotopies of compact manifolds,” Asterisque, No. 6, Soc. Math. France, Paris, 1973. · Zbl 0274.57010
[11] K. Igusa, ”On the homotopy type of the space of generalized Morse functions,” Topology, 23, No.2, 245–256 (1984). · Zbl 0595.57025 · doi:10.1016/0040-9383(84)90043-0
[12] K. Igusa, ”Higher singularities of smooth functions are unnecessary,” Ann. of Math. (2), 119 No.1, 1–58 (1984). · Zbl 0548.58005 · doi:10.2307/2006962
[13] F. Laudenbach, ”Formes differentielles de degre 1 fermees non singulieres: classes d’homotopie de leurs noyaux,” Comment. Math. Helv., 51, No.3, 447–464 (1976). · Zbl 0354.58001 · doi:10.1007/BF02568169
[14] V. A. Vasil’ev, Topology of Complements to Discriminants [in Russian], Fazis, Moscow, 1997.
[15] V. A. Vasil’ev, ”Topology of spaces of functions without complex singularities,” Funkts. Anal. Prilozhen., 23, No.4, 24–36 (1989).
[16] L. S. Pontryagin, Smooth Manifolds and Their Applications in Homotopy Theory [in Russian], 2d ed., Nauka, Moscow, 1976. · Zbl 0084.19002
[17] R. Rimanyi and A. Szucs, ”Pontrjagin-Thom-type construction for maps with singularities,” Topology, 37, No.6, 1177–1191 (1998). · Zbl 0924.57035 · doi:10.1016/S0040-9383(97)00093-1
[18] A. Szucs, ”Analogue of the Thom space for mappings with singularity of type \(\Sigma\)1,” Mat. Sb., 108 (150), No.3, 438–456 (1979).
[19] R. Thom, ”Quelques proprietes globales des varietes differentiables,” Comment. Math. Helv., 28, 17–86 (1954). · Zbl 0057.15502 · doi:10.1007/BF02566923
[20] R. ells, ”Cobordism groups of immersions,” Topology, 5, 281–294 (1966). · Zbl 0145.20202 · doi:10.1016/0040-9383(66)90011-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.