×

Large deviations for random walk in random environment with holding times. (English) Zbl 1126.60035

Summary: Suppose that the integers are assigned the random variables \(\{\omega_x,\mu_x\}\) (taking values in the unit interval times the space of probability measures on \(\mathbb R_+\)), which serve as an environment. This environment defines a random walk \(\{X_t\}\) (called a RWREH) which, when at x, waits a random time distributed according to \(\mu_x\) and then, after one unit of time, moves one step to the right with probability \(\omega_x\), and one step to the left with probability \(1-\omega_x\). We prove large deviation principles for \(X_t/t\), both quenched (i.e., conditional upon the environment), with deterministic rate function, and annealed (i.e., averaged over the environment). As an application, we show that for random walks on Galton-Watson trees, quenched and annealed rate functions along a ray differ.

MSC:

60G50 Sums of independent random variables; random walks
60F10 Large deviations
60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60K37 Processes in random environments
82C41 Dynamics of random walks, random surfaces, lattice animals, etc. in time-dependent statistical mechanics
82C44 Dynamics of disordered systems (random Ising systems, etc.) in time-dependent statistical mechanics
Full Text: DOI

References:

[1] Comets, F., Gantert, N. and Zeitouni, O. (2000). Quenched, annealed and functional large deviations for one dimensional random walk in random environment. Probab. Theory Related Fields 118 65–114. [Erratum 125 (2003) 42–44.] · Zbl 0965.60098 · doi:10.1007/s004400000074
[2] Dembo, A., Gantert, N., Peres, Y. and Zeitouni, O. (2002). Large deviations for random walks on Galton–Watson trees: Averaging and uncertainty. Probab. Theory Related Fields 122 241–288. · Zbl 0996.60110 · doi:10.1007/s004400100162
[3] Dembo, A., Peres, Y. and Zeitouni, O. (1996). Tail estimates for one-dimensional random walk in random environment. Comm. Math. Phys. 181 667–684. · Zbl 0868.60058 · doi:10.1007/BF02101292
[4] Dembo, A. and Zeitouni, O. (1998). Large Deviation Techniques and Applications , 2nd ed. Springer, New York. · Zbl 0896.60013
[5] Föllmer, H. (1987). Random fields and diffusion processes. In Ecole d’Eté de Saint Flour XV–XVII . Lecture Notes in Math . 1362 101–203. Springer, New York. · Zbl 0661.60063
[6] Fontes, L. R. G., Isopi, M. and Newman, C. M. (2002). Random walks with strongly inhomogeneous rates and singular diffusions: Convergence, localization, and aging in one dimension. Ann. Probab. 30 579–604. · Zbl 1015.60099 · doi:10.1214/aop/1023481003
[7] Gantert, N. and Zeitouni, O. (1998). Quenched sub-exponential tail estimates for one-dimensional random walk in random environment. Comm. Math. Phys. 194 177–190. · Zbl 0982.60037 · doi:10.1007/s002200050354
[8] Greven, A. and den Hollander, F. (1994). Large deviations for a random walk in random environment. Ann. Probab. 22 1381–1428. JSTOR: · Zbl 0820.60054 · doi:10.1214/aop/1176988607
[9] Kesten, H., Kozlov, M. V. and Spitzer, F. (1975). A limit law for random walk in a random environment. Compositio Math. 30 145–168. · Zbl 0388.60069
[10] Lyons, R., Pemantle, R. and Peres, Y. (1995). Ergodic theory on Galton–Watson trees: Speed of random walk and dimension of harmonic measure. Ergodic Theory Dynam. Systems 15 593–619. · Zbl 0819.60077 · doi:10.1017/S0143385700008543
[11] Lyons, R., Pemantle, R. and Peres, Y. (1996). Biased random walk on Galton–Watson trees. Probab. Theory Related Fields 106 249–264. · Zbl 0859.60076 · doi:10.1007/s004400050064
[12] Pisztora, A. and Povel, T. (1999). Large deviation principle for random walk in a quenched random environment in the low speed regime. Ann. Probab. 27 1389–1413. · Zbl 0964.60056 · doi:10.1214/aop/1022677453
[13] Pisztora, A., Povel, T. and Zeitouni, O. (1999). Precise large deviation estimates for one-dimensional random walk in random environment. Probab. Theory Related Fields 113 135–170. · Zbl 0922.60059 · doi:10.1007/s004400050206
[14] Sinai, Ya. G. (1982). The limiting behavior of a one-dimensional random walk in random environment. Theory Probab. Appl. 27 256–268. · Zbl 0505.60086 · doi:10.1137/1127028
[15] Sion, M. (1958). On general minimax theorems. Pacific J. Math. 8 171–176. · Zbl 0081.11502 · doi:10.2140/pjm.1958.8.171
[16] Sznitman, A. S. (2001). Milieux aléatoires et petites valeurs propres. Etats de la Recherche, Luminy. In Milieux Aléatoires , Panoramas et Synthèses 12 (F. Comets and E. Pardoux, eds.). Société Mathématique de France. · Zbl 1025.60046
[17] Varadhan, S. R. S. (2003). Large deviations for random walks in a random environment. Comm. Pure Appl. Math. 56 1222–1245. · Zbl 1042.60071 · doi:10.1002/cpa.10093
[18] Zeitouni, O. (2004). Random walks in random environment. XXXI Summer School in Probability\(,\) St. Flour\(,\) 2001 . Lecture Notes in Math. 1873 193–312. · Zbl 1060.60103
[19] Zerner, M. P. W. (1998). Lyapounov exponents and quenched large deviations for multidimensional random walk in random environment. Ann. Probab. 26 1446–1476. · Zbl 0937.60095 · doi:10.1214/aop/1022855870
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.