×

Asymptotic theory of least squares estimators for nearly unstable processes under strong dependence. (English) Zbl 1126.62069

Summary: This paper considers the effect of least squares procedures for nearly unstable linear time series with strongly dependent innovations. Under a general framework and appropriate scaling, it is shown that ordinary least squares procedures converge to functionals of fractional Ornstein-Uhlenbeck processes. We use fractional integrated noise as an example to illustrate the important ideas. In this case, the functionals bear only formal analogy to those in the classical framework with uncorrelated innovations, with Wiener processes being replaced by fractional Brownian motions. It is also shown that limit theorems for the functionals involve nonstandard scaling and nonstandard limiting distributions. Results of this paper shed light on the asymptotic behavior of nearly unstable long-memory processes.

MSC:

62M05 Markov processes: estimation; hidden Markov models
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62E20 Asymptotic distribution theory in statistics
62F12 Asymptotic properties of parametric estimators

References:

[1] Anderson, T. W. (1959). On asymptotic distributions of estimates of parameters of stochastic difference equations. Ann. Math. Statist. 30 676–687. · Zbl 0092.36502 · doi:10.1214/aoms/1177706198
[2] Billingsley, P. (1968). Convergence of Probability Measures. Wiley, New York. · Zbl 0172.21201
[3] Brockwell, P. and Davis, R. A. (1991). Time Series : Theory and Methods , 2nd ed. Springer, New York. · Zbl 0709.62080
[4] Chan, N. H. and Wei, C. Z. (1987). Asymptotic inference for nearly nonstationary AR\((1)\) processes. Ann. Statist. 15 1050–1063. · Zbl 0638.62082 · doi:10.1214/aos/1176350492
[5] Dahlhaus, R. (1985). Data tapers in time series analysis. Habilitation thesis, Universität-GHS, Essen. · Zbl 0605.62100
[6] Davidson, J. (2002). Establishing conditions for the functional central limit theorem in nonlinear and semiparametric time series processes. J. Econometrics 106 243–269. · Zbl 1041.60032 · doi:10.1016/S0304-4076(01)00100-2
[7] Davidson, J. and de Jong, R. M. (2000). The functional central limit theorem and weak convergence to stochastic integrals. II. Fractionally integrated processes. Econometric Theory 16 643–666. JSTOR: · Zbl 0981.60028 · doi:10.1017/S0266466600165028
[8] Davydov, Yu. A. (1970). The invariance principle for stationary processes. Theory Probab. Appl. 15 487–498. · Zbl 0219.60030 · doi:10.1137/1115050
[9] de Jong, R. M. and Davidson, J. (2000). The functional central limit theorem and weak convergence to stochastic integrals. I. Weakly dependent processes. Econometric Theory 16 621–642. JSTOR: · Zbl 0981.60027 · doi:10.1017/S0266466600165016
[10] Dobrushin, R. L. and Major, P. (1979). Non-central limit theorems for nonlinear functionals of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50 27–52. · Zbl 0397.60034 · doi:10.1007/BF00535673
[11] Doukhan, P., Oppenheim, G. and Taqqu, M. S., eds. (2003). Theory and Applications of Long-Range Dependence. Birkhäuser, Boston. · Zbl 1005.00017
[12] Duncan, T. E., Hu, Y. and Pasik-Duncan, B. (2000). Stochastic calculus for fractional Brownian motion. I. Theory. SIAM J. Control Optim. 38 582–612. · Zbl 0947.60061 · doi:10.1137/S036301299834171X
[13] Hall, P. and Heyde, C. C. (1980). Martingale Limit Theory and Its Application. Academic Press, New York. · Zbl 0462.60045
[14] Jeganathan, P. (1991). On the asymptotic behavior of least-squares estimators in AR time series with roots near the unit circle. Econometric Theory 7 269–306. JSTOR:
[15] Jeganathan, P. (1999). On asymptotic inference in cointegrated time series with fractionally integrated errors. Econometric Theory 15 583–621. JSTOR: · Zbl 0985.62070 · doi:10.1017/S0266466699154057
[16] Larsson, R. (1998). Bartlett corrections for unit root test statistics. J. Time Ser. Anal. 19 425–438. · Zbl 0904.62102 · doi:10.1111/1467-9892.00101
[17] Le Breton, A. and Pham, D. T. (1989). On the bias of the least squares estimator for the first order autoregressive process. Ann. Inst. Statist. Math. 41 555–563. · Zbl 0694.62040 · doi:10.1007/BF00050668
[18] Mann, H. B. and Wald, A. (1943). On the statistical treatment of linear stochastic difference equations. Econometrica 11 173–220. JSTOR: · Zbl 0063.03773 · doi:10.2307/1905674
[19] Marinucci, D. and Robinson, P. M. (1999). Alternative forms of fractional Brownian motion. J. Statist. Plann. Inference 80 111–122. · Zbl 0934.60071 · doi:10.1016/S0378-3758(98)00245-6
[20] Phillips, P. C. B. (1987). Towards a unified asymptotic theory for autoregression. Biometrika 74 535–547. JSTOR: · Zbl 0654.62073 · doi:10.1093/biomet/74.3.535
[21] Rao, M. M. (1978). Asymptotic distribution of an estimator of the boundary parameter of an unstable process. Ann. Statist. 6 185–190. · Zbl 0378.62018 · doi:10.1214/aos/1176344077
[22] Robinson, P. M., ed. (2003). Time Series with Long Memory . Oxford Univ. Press. · Zbl 1113.62106
[23] Robinson, P. M. (2005). Efficiency improvements in inference on stationary and nonstationary fractional time series. Ann. Statist. 33 1800–1842. · Zbl 1078.62096 · doi:10.1214/009053605000000354
[24] Robinson, P. M. (2005). The distance between rival nonstationary fractional processes. J. Econometrics 128 283–300. · Zbl 1335.62143 · doi:10.1016/j.jeconom.2004.08.015
[25] Samorodnitsky, G. and Taqqu, M. S. (1994). Stable Non-Gaussian Random Processes : Stochastic Models with Infinite Variance. Chapman and Hall, New York. · Zbl 0925.60027
[26] Sowell, F. (1990). The fractional unit root distribution. Econometrica 58 495–505. JSTOR: · Zbl 0727.62025 · doi:10.2307/2938213
[27] Tanaka, K. (1996). Time Series Analysis : Nonstationary and Noninvertible Distribution Theory. Wiley, New York. · Zbl 0861.62062
[28] Taqqu, M. S. (1975). Weak convergence to fractional Brownian motion and to the Rosenblatt process. Z. Wahrsch. Verw. Gebiete 31 287–302. · Zbl 0303.60033 · doi:10.1007/BF00532868
[29] Velasco, C. and Robinson, P. M. (2000). Whittle pseudo-maximum likelihood estimation for nonstationary time series. J. Amer. Statist. Assoc. 95 1229–1243. JSTOR: · Zbl 1008.62087 · doi:10.2307/2669763
[30] White, J. S. (1958). The limiting distribution of the serial correlation coefficient in the explosive case. Ann. Math. Statist. 29 1188–1197. · Zbl 0099.13004 · doi:10.1214/aoms/1177706450
[31] Wu, W. B. (2006). Unit root testing for functionals of linear processes. Econometric Theory 22 1–14. · Zbl 1083.62098 · doi:10.1017/S0266466606060014
[32] Wu, W. B. and Min, W. (2005). On linear processes with dependent innovations. Stochastic Process. Appl. 115 939–958. · Zbl 1081.62071 · doi:10.1016/j.spa.2005.01.001
[33] Young, L. C. (1936). An inequality of the Hölder type, connected with Stieltjes integration. Acta Math. 67 251–282. · Zbl 0016.10404 · doi:10.1007/BF02401743
[34] Zähle, M. (1998). Integration with respect to fractal functions and stochastic calculus. I. Probab. Theory Related Fields 111 333–374. · Zbl 0918.60037 · doi:10.1007/s004400050171
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.