×

Estimation in spin glasses: a first step. (English) Zbl 1126.62128

Summary: The Sherrington-Kirkpatrick [see D. Sherrington, Neural networks: The spin glass approach. J. G. Taylor (ed.), Math. Approaches Neural Networks. North-Holland Math. Libr. 51, 261–291 (1993; Zbl 0785.92005)] model of spin glasses, the Hopfield model of neural networks and the Ising spin glass are all models of binary data belonging to the one-parameter exponential family with quadratic sufficient statistic. Under bare minimal conditions, we establish the \(\sqrt N\)-consistency of the maximum pseudolikelihood estimate of the natural parameter in this family, even at critical temperatures. Since very little is known about the low and critical temperature regimes of these extremely difficult models, the proof requires several new ideas. The author’s version of Stein’s method is a particularly useful tool. We aim to introduce these techniques into the realm of mathematical statistics through an example and present some open questions.

MSC:

62P35 Applications of statistics to physics
62F12 Asymptotic properties of parametric estimators
60K35 Interacting random processes; statistical mechanics type models; percolation theory
82B44 Disordered systems (random Ising models, random Schrödinger operators, etc.) in equilibrium statistical mechanics
62F10 Point estimation
82C44 Dynamics of disordered systems (random Ising systems, etc.) in time-dependent statistical mechanics

Citations:

Zbl 0785.92005

References:

[1] Aizenman, M., Lebowitz, J. L. and Ruelle, D. (1987). Some rigorous results on the Sherrington–Kirkpatrick spin glass model. Comm. Math. Phys. 112 3–20. · Zbl 1108.82312 · doi:10.1007/BF01217677
[2] Aizenman, M., Sims, R. and Starr, S. (2003). Extended variational principle for the Sherrington–Kirkpatrick spin-glass model. Phys. Rev. B 68 214403.
[3] Bai, Z. D. (1999). Methodologies in spectral analysis of large-dimensional random matrices, a review (with discussion). Statist. Sinica 9 611–677. · Zbl 0949.60077
[4] Besag, J. (1974). Spatial interaction and the statistical analysis of lattice systems (with discussion). J. Roy. Statist. Soc. Ser. B 36 192–236. JSTOR: · Zbl 0327.60067
[5] Besag, J. (1975). Statistical analysis of non-lattice data. Statistician 24 179–195.
[6] Bovier, A. and Gayrard, V. (1998). Hopfield models as generalized random mean field models. In Mathematical Aspects of Spin Glasses and Neural Networks (A. Bovier and P. Picco, eds.) 3–89. Birkhäuser, Boston. · Zbl 0899.60087
[7] Chatterjee, S. (2005). Concentration inequalities with exchangeable pairs. Ph.D. dissertation, Stanford Univ. Available at arxiv.org/abs/math/0507526.
[8] Chatterjee, S. (2007). Concentration of Haar measures, with an application to random matrices. J. Funct. Anal. 245 379–389. · Zbl 1115.60007 · doi:10.1016/j.jfa.2007.01.003
[9] Chatterjee, S. (2007). Stein’s method for concentration inequalities. Probab. Theory Related Fields 138 305–321. · Zbl 1116.60056 · doi:10.1007/s00440-006-0029-y
[10] Comets, F. (1992). On consistency of a class of estimators for exponential families of Markov random fields on the lattice. Ann. Statist. 20 455–468. · Zbl 0787.62100 · doi:10.1214/aos/1176348532
[11] Comets, F. and Neveu, J. (1995). The Sherrington–Kirkpatrick model of spin glasses and stochastic calculus: The high temperature case. Comm. Math. Phys. 166 549–564. · Zbl 0811.60098 · doi:10.1007/BF02099887
[12] Geyer, C. J. and Thompson, E. A. (1992). Constrained Monte Carlo maximum likelihood for dependent data (with discussion). J. Roy. Statist. Soc. Ser. B 54 657–699. JSTOR:
[13] Gidas, B. (1988). Consistency of maximum likelihood and pseudolikelihood estimators for Gibbs distributions. In Stochastic Differential Systems , Stochastic Control Theory and Applications (W. Fleming and P.-L. Lions, eds.) 129–145. Springer, New York. · Zbl 0648.62099
[14] Guerra, F. (2003). Broken replica symmetry bounds in the mean field spin glass model. Comm. Math. Phys. 233 1–12. · Zbl 1013.82023 · doi:10.1007/s00220-002-0773-5
[15] Guerra, F. and Toninelli, F. L. (2002). The thermodynamic limit in mean field spin glass models. Comm. Math. Phys. 230 71–79. · Zbl 1004.82004 · doi:10.1007/s00220-002-0699-y
[16] Harris, T. E. (1960). A lower bound for the critical probability in a certain percolation process. Proc. Cambridge Philos. Soc. 56 13–20. · Zbl 0122.36403 · doi:10.1017/S0305004100034241
[17] Hopfield, J. J. (1982). Neural networks and physical systems with emergent collective computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79 2554–2558. JSTOR: · Zbl 1369.92007 · doi:10.1073/pnas.79.8.2554
[18] Ising, E. (1925). Beitrag zur Theorie des Ferromagnetismus. Z. Physik 31 253–258.
[19] Jensen, J. L. and Møller, J. (1991). Pseudolikelihood for exponential family models of spatial point processes. Ann. Appl. Probab. 1 445–461. · Zbl 0736.60045 · doi:10.1214/aoap/1177005877
[20] Jerrum, M. and Sinclair, A. (1993). Polynomial-time approximation algorithms for the Ising model. SIAM J. Comput. 22 1087–1116. · Zbl 0782.05076 · doi:10.1137/0222066
[21] Onsager, L. (1944). Crystal statistics. I. A two-dimensional model with an order–disorder transition. Phys. Rev. ( 2 ) 65 117–149. · Zbl 0060.46001 · doi:10.1103/PhysRev.65.117
[22] Panchenko, D. (2005). Free energy in the generalized Sherrington–Kirkpatrick mean field model. Rev. Math. Phys. 17 793–857. · Zbl 1102.82014 · doi:10.1142/S0129055X05002455
[23] Shcherbina, M. V. (1997). On the replica symmetric solution for the Sherrington–Kirkpatrick model. Helv. Phys. Acta 70 838–853. · Zbl 0899.60096
[24] Sherrington, D. and Kirkpatrick, S. (1975). Solvable model of a spin-glass. Phys. Rev. Lett. 35 1792–1796.
[25] Talagrand, M. (2003). Spin Glasses : A Challenge for Mathematicians. Cavity and Mean Field Models . Springer, Berlin. · Zbl 1033.82002
[26] Talagrand, M. (2006). The Parisi formula. Ann. of Math. ( 2 ) 163 221–263. · Zbl 1137.82010 · doi:10.4007/annals.2006.163.221
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.