Strong convergence of an implicit iteration process for a finite family of generalized asymptotically quasi-nonexpansive maps. (English) Zbl 1126.65054

Let \(E\) be a real Banach space and \(K\) be a nonempty closed convex part of it. The map \(T:K\to K\) is called generalized asymptotically quasi-nonexpansive if \(F(T)\neq \emptyset\) and
\[ \| T^nx-x^*\| \leq (1+u_n)\| x-x^*\| +c_n,\quad n\geq 1,\;x\in K,\;x^*\in F(T), \] where \((u_n)\) and \((c_n)\) are sequences converging to zero. Let \((T_i; i=1,\dots,N)\) be a family of such maps. Sufficient conditions are given so that the implicit iterative scheme \[ x_n=\alpha_nx_{n-1}+(1-\alpha_n)T_i^kx_n, n\geq 1;\;x_0\in K \]
where \(n=(k-1)N+i\), \(T_n=T_{n\pmod N}=T_i\), \(i\in \{1,\dots,N\}\), should strongly converge to a common fixed point of the family \((T_i; i=1,\dots,N)\).
This, in particular, answers affirmatively a question raised by H.-K. Xu and R. G. Ori [Numer. Funct. Anal. Optim. 22, 767–773 (2001; Zbl 0999.47043)].


65J15 Numerical solutions to equations with nonlinear operators
47J25 Iterative procedures involving nonlinear operators
47H09 Contraction-type mappings, nonexpansive mappings, \(A\)-proper mappings, etc.


Zbl 0999.47043
Full Text: DOI


[1] Berinde, V., Iterative Approximation of Fixed Points (2002), Editura Efemeride: Editura Efemeride Baia Mare · Zbl 1036.47037
[2] Chidume, C. E., Iterative algorithms for nonexpansive mappings and some of their generalizations, (Agarwal, R. P.; etal., Nonlinear Analysis and Applications (2003), Kluwer Academic Publishers), 383-429 · Zbl 1057.47003
[4] Chidume, C. E.; Shahzad, N., Strong convergence of an implicit iteration process for a finite family of nonexpansive mappings, Nonlinear Anal., 62, 1149-1156 (2005) · Zbl 1090.47055
[5] Diaz, J. B.; Metcalf, F. B., On the structure of the set of subsequential limit points of successive approximations, Bull. Am. Math. Soc., 73, 516-519 (1967) · Zbl 0161.20103
[6] Goebel, K.; Kirk, W. A., A fixed point theorem for asymptotically nonexpansive mappings, Proc. Am. Math. Soc., 35, 171-174 (1972) · Zbl 0256.47045
[7] Kim, G. E.; Kim, T. H., Mann and Ishikawa iterations with errors for non-Lipschitzian mappings in Banach spaces, Comput. Math. Appl., 42, 1565-1570 (2001) · Zbl 1001.47048
[8] Osilike, M. O.; Aniagbosor, S. C., Weak and strong convergence theorems for fixed points of asymptotically nonexpansive mappings, Math. Comput. Model., 32, 1181-1191 (2000) · Zbl 0971.47038
[9] Qihou, L., Iteration sequences for asymptotically quasi-nonexpansive mappings with an error member of uniform convex Banach space, J. Math. Anal. Appl., 266, 468-471 (2002) · Zbl 1057.47057
[10] Rhoades, B. E.; Soltuz, S. M., The convergence of an implicit mean value iteration, Int. J. Math. Math. Sci., 2006 (2006), Article ID 68369, 7p · Zbl 1122.39015
[11] Sun, Z. H., Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl., 286, 351-358 (2003) · Zbl 1095.47046
[12] Tan, K. K.; Xu, H. K., Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl., 178, 301-308 (1993) · Zbl 0895.47048
[13] Xu, H. K., Inequalities in Banach spaces with applications, Nonlinear Anal., 16, 1127-1138 (1991) · Zbl 0757.46033
[14] Xu, H. K.; Ori, R., An implicit iterative process for nonexpansive mappings, Numer. Funct. Anal. Optim., 22, 767-773 (2001) · Zbl 0999.47043
[15] Zhou, Y.; Chang, S. S., Convergence of implicit iteration process for a finite family of asymptotically nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Appl., 23, 911-921 (2002) · Zbl 1041.47048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.