zbMATH — the first resource for mathematics

Multiscaled asymptotic expansions for the electric potential: surface charge densities and electric fields at rounded corners. (English) Zbl 1126.78004
The authors compute the charge density and electric field topology at sharp and rounded tips of electrodes by solving the Poisson equation for the electrostatic potential subject to proper Dirichlet boundary condition and a required asymptotic behaviour at infinity. They derive asymptotic expressions for the electric potential at the vicinity of the electrode tip that are suitable for further applications. The theoretical results are compared with numerical solutions in Cartesian as well as in cylindrical geometry with axial symmetry.

78A30 Electro- and magnetostatics
Full Text: DOI
[1] Abramowitz M., Handbook of Mathematical Functions (1965)
[2] DOI: 10.1016/j.elstat.2004.01.021 · doi:10.1016/j.elstat.2004.01.021
[3] DOI: 10.1002/mma.279 · Zbl 0995.35070 · doi:10.1002/mma.279
[4] DOI: 10.1002/mma.400 · Zbl 1100.78007 · doi:10.1002/mma.400
[5] Atten P., J. Optoelectronics Adv. Mat. 6 pp 1023–
[6] Bernardi C., Series in Applied Mathematics, in: Spectral Methods for Axisymmetric Domains (1999)
[7] Caloz G., Asympt. Anal. 50 pp 121–
[8] DOI: 10.1016/S1631-073X(03)00030-X · Zbl 1028.65118 · doi:10.1016/S1631-073X(03)00030-X
[9] DOI: 10.1007/s00211-005-0664-8 · Zbl 1088.65103 · doi:10.1007/s00211-005-0664-8
[10] DOI: 10.1016/j.crma.2006.10.009 · Zbl 1119.78006 · doi:10.1016/j.crma.2006.10.009
[11] Costabel M., Commun. Partial Diff. Eq. 21 pp 1919–
[12] Grisvard P., Monographs and Studies in Mathematics, in: Elliptic Problems in Nonsmooth Domains (1985) · Zbl 0695.35060
[13] Grisvard P., RMA 22, in: Singularities in Boundary Value Problems (1992) · Zbl 0766.35001
[14] Hanouzet B., Rend. Sem. Univ. Padova 46 pp 227–
[15] Krähenbühl L., RIGE 8 pp 35–
[16] Lenoir M., Integral Equations and Diffraction Problems (2004)
[17] Maz’ya V., Advances and Applications 111, in: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Problems: Volume I, Operator Theory (2000)
[18] Mercier B., RAIRO Anal. Numér. 16 pp 405– · Zbl 0531.65054 · doi:10.1051/m2an/1982160404051
[19] DOI: 10.1515/9783110848915 · doi:10.1515/9783110848915
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.