×

Linear preservers of extremes of rank inequalities over semirings: the factor rank. (English. Russian original) Zbl 1127.15001

J. Math. Sci., New York 131, No. 5, 5919-5938 (2005); translation from Sovrem. Mat. Prilozh. 13, 53-70 (2004).
Summary: We characterize linear preservers for sets of matrix ordered tuples which satisfy extremal properties with respect to factor rank.

MSC:

15A04 Linear transformations, semilinear transformations
15B33 Matrices over special rings (quaternions, finite fields, etc.)
15A03 Vector spaces, linear dependence, rank, lineability
16Y60 Semirings
PDF BibTeX XML Cite
Full Text: DOI

References:

[1] L. B. Beasley, ”Linear operators which preserve pairs on which the rank is additive,” J. Korean SIAM, 2, 27–30 (1998).
[2] L. B. Beasley and A. E. Guterman, Rank inequalities over semirings, Preprint. · Zbl 1070.15014
[3] L. B. Beasley, A. E. Guterman, and C. L. Neal, ”Linear preservers for Sylvester and Frobenius bounds on matrix rank,” Rocky Mount. J. Math. (to appear). · Zbl 1134.15003
[4] L. B. Beasley, S.-G. Lee, and S.-Z. Song, ”Linear operators that preserve pairs of matrices which satisfy extreme rank properties,” Linear Algebra Appl., 350 263–272 (2002). · Zbl 1004.15025
[5] L. B. Beasley, S.-G. Lee, and S.-Z. Song, ”Linear operators that preserve zero-term rank of Boolean matrices,” J. Korean Math. Soc., 36, No.6, 1181–1190 (1999). · Zbl 0953.15003
[6] L. B. Beasley and N. J. Pullman, ”Operators that preserve semiring matrix functions,” Linear Algebra Appl. 99, 199–216 (1988). · Zbl 0635.15003
[7] L. B. Beasley and N. J. Pullman, ”Semiring rank versus column rank,” Linear Algebra Appl. 101, 33–48 (1988). · Zbl 0642.15002
[8] K. Glazek, A Guide to the Literature on Semirings and Their Applications in Mathematics and Information Sciences, Kluwer Academic Publishers (2002).
[9] D. A. Gregory and N. J. Pullman, ”Semiring rank: Boolean rank and nonnegative rank factorization,” J. Combin. Inform. System Sci., 8, 223–233 (1983). · Zbl 0622.15007
[10] A. E. Guterman, ”Linear preservers for matrix inequalities and partial orderings,” Linear Algebra and Appl., 331, 75–87 (2001). · Zbl 0985.15018
[11] S.-G Huang and S.-Z. Song, ”Spanning column ranks and their preservers of nonnegative matrices,” Linear Algebra Appl., 254, 485–495 (1997). · Zbl 0944.15001
[12] K. H. Kim, Boolean Matrix Theory and Applications, Pure Appl. Math., 70, Marcel Dekker, New York (1982).
[13] G. Marsaglia and P. Styan, ”When does rk(A + B) = rk(A) + rk(B)?” Can. Math. Bull., 15, No.3, 451–452 (1972). · Zbl 0252.15002
[14] G. Marsaglia and P. Styan, ”Equalities and inequalities for ranks of matrices,” Linear Multilin. Algebra, 2, 269–292 (1974). · Zbl 0297.15003
[15] P. Pierce et al., ”A survey of linear preserver problems,” Linear Multilin. Algebra, 33, 1–119 (1992). · Zbl 0767.15006
[16] Y. Tian, ”Rank equalities related to outer inverses of matrices and applications,” Linear Multilin. Algebra, 49, 269–288 (2002). · Zbl 0992.15004
[17] Y. Tian, ”Upper and lower bounds for ranks of matrix expressions using generalized inverses,” Linear Algebra Appl., 355, 187–214 (2002). · Zbl 1016.15003
[18] V. L. Watts, ”Boolean rank of Kronecker products,” Linear Algebra Appl., 336, 261–264 (2001). · Zbl 0993.15002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.