Buan, Aslak Bakke; Marsh, Bethany Rose; Reineke, Markus; Reiten, Idun; Todorov, Gordana Tilting theory and cluster combinatorics. (English) Zbl 1127.16011 Adv. Math. 204, No. 2, 572-618 (2006). From the authors’ summary: We introduce a new category \(\mathcal C\), which we call the cluster category, obtained as a quotient of the bounded derived category \(\mathcal D\) of the module category of a finite-dimensional hereditary algebra \(H\) over a field. We show that, in the simply laced Dynkin case, \(\mathcal C\) can be regarded as a natural model for the combinatorics of the corresponding Fomin-Zelevinsky cluster algebra. Using approximation theory, we investigate the tilting theory of \(\mathcal C\), showing that it is more regular than that of the module category itself, and demonstrating an interesting link with the classification of self-injective algebras of finite representation type. This investigation also enables us to conjecture a generalisation of APR-tilting. Reviewer: Xi Changchang (Beijing) Cited in 39 ReviewsCited in 407 Documents MSC: 16G20 Representations of quivers and partially ordered sets 16G70 Auslander-Reiten sequences (almost split sequences) and Auslander-Reiten quivers 18E30 Derived categories, triangulated categories (MSC2010) 16D90 Module categories in associative algebras Keywords:tilting modules; cluster algebras; cluster categories; bounded derived categories; module categories of finite-dimensional hereditary algebras; approximations; representation types PDF BibTeX XML Cite \textit{A. B. Buan} et al., Adv. Math. 204, No. 2, 572--618 (2006; Zbl 1127.16011) Full Text: DOI arXiv References: [1] Auslander, M.; Platzeck, M. I.; Reiten, I., Coxeter functors without diagrams, Trans. Amer. Math. Soc., 250, 1-46 (1979) · Zbl 0421.16016 [2] Auslander, M.; Smalø, S. O., Preprojective modules over Artin algebras, J. Algebra, 66, 61-122 (1980) · Zbl 0477.16013 [3] Berenstein, A.; Fomin, S.; Zelevinsky, A., Cluster algebras III: upper bounds and double Bruhat cells, Duke Math. J., 126, 1, 1-52 (2005) · Zbl 1135.16013 [5] Bongartz, K., Critical simply connected algebras, Manuscripta Math., 46, 1-3, 117-136 (1984) · Zbl 0537.16024 [6] Bongartz, K.; Gabriel, P., Covering spaces in representation-theory, Invent. Math., 65, 3, 331-378 (1981/2) · Zbl 0482.16026 [7] Bretscher, O.; Läser, C.; Riedtmann, C., Selfinjective and simply connected algebras, Manuscipta Math., 36, 253-307 (1981) · Zbl 0478.16024 [8] Buan, A. B.; Krause, H., Tilting and cotilting for quivers of type \(\widetilde{A}_n\), J. Pure Appl. Algebra, 190, 1-3, 1-21 (2004) · Zbl 1085.16010 [15] Chapoton, F.; Fomin, S.; Zelevinsky, A., Polytopal realizations of generalized associahedra, Canad. Math. Bull., 45, 4, 537-566 (2002) · Zbl 1018.52007 [16] Coelho, F.; Happel, D.; Unger, L., Complements to partial tilting modules, J. Algebra, 170, 1, 184-205 (1994) · Zbl 0834.16012 [18] Fomin, S.; Zelevinsky, A., Cluster algebras I: foundations, J. Amer. Math. Soc., 15, 2, 497-529 (2002) · Zbl 1021.16017 [19] Fomin, S.; Zelevinsky, A., Cluster algebras II: finite type classification, Invent. Math., 154, 1, 63-121 (2003) · Zbl 1054.17024 [20] Fomin, S.; Zelevinsky, A., The Laurent phenomenon, Adv. Appl. Math., 28, 2, 119-144 (2002) · Zbl 1012.05012 [21] Fomin, S.; Zelevinsky, A., Y-systems and generalized associahedra, Ann. Math., 158, 3 (2003) · Zbl 1057.52003 [22] Gekhtman, M.; Shapiro, M.; Vainshtein, A., Cluster algebras and Poisson geometry, Moscow Math. J., 3, 899-934 (2003) · Zbl 1057.53064 [23] Happel, D., Tilting sets on cylinders, Proc. London Math. Soc., 51, 3, 21-55 (1985) · Zbl 0583.16020 [25] Happel, D.; Reiten, I.; Smalø, S., Tilting in abelian categories and quasitilted algebras, Mem. Amer. Math. Soc., 120, 575 (1996) · Zbl 0849.16011 [26] Happel, D.; Ringel, C., Tilted algebras, Trans. Amer. Math. Soc., 274, 2, 399-443 (1982) · Zbl 0503.16024 [27] Happel, D.; Unger, L., Almost complete tilting modules, Proc. Amer. Math. Soc., 107, 3, 603-610 (1989) · Zbl 0675.16012 [30] Marsh, R.; Reineke, M.; Zelevinsky, A., Generalized associahedra via quiver representations, Trans. Amer. Math. Soc., 355, 10, 4171-4186 (2003) · Zbl 1042.52007 [31] Panyushev, D. I., AD-nilpotent ideals of a Borel subalgebra: generators and duality, J. Algebra, 274, 2, 822-846 (2004) · Zbl 1067.17005 [32] Reiten, I.; Van den Bergh, M., Noetherian hereditary abelian categories satisfying Serre duality, J. Amer. Math. Soc., 15, 2, 295-366 (2002) · Zbl 0991.18009 [34] Riedtmann, C., Algebren, Darstellungsköcher, Überlagerungen und zurück, Comment. Math. Helv., 55, 2, 199-224 (1980) · Zbl 0444.16018 [35] Riedtmann, C.; Schofield, A., On open orbits and their complements, J. Algebra, 130, 2, 388-411 (1990) · Zbl 0696.16025 [36] Riedtmann, C.; Schofield, A., On a simplicial complex associated with tilting modules, Comment. Math. Helv., 66, 1, 70-78 (1991) · Zbl 0790.16013 [39] Unger, L., Schur modules over wild, finite-dimensional path algebras with three simple modules, J. Pure Appl. Algebra, 64, 2, 205-222 (1990) · Zbl 0701.16012 [40] Unger, L., The simplical complex of tilting modules over quiver algebras, Proc. London Math. Soc., 73, 3, 27-46 (1996) · Zbl 0861.16008 [41] von Höhne, H., On the dimension vectors in preprojective components, Bull. London Math. Soc., 26, 2, 147-152 (1994) · Zbl 0813.16008 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.