×

Monotonicity of ratio between the generalized logarithmic means. (English) Zbl 1127.26021

The generalized logarithmic means are defined as follows
\[ L_r(a,b)= \begin{cases} \left(\dfrac{b^{r+1}-a^{r+1}}{(r+1)(b-a)}\right)^{1/r}, & r \neq -1, 0,\\ \dfrac{b-a}{\ln{b}-\ln{a}}, & r=-1,\\ \dfrac{1}{e}\left(\dfrac{b^b}{a^a}\right)^{1/(b-a)}, & r=0, \end{cases} \]
for \(a \neq b\). \(L_r(a,b)=a\), for \(a = b\). In this short note, for \(c>b>a>0\) being real numbers, the authors prove that the function \(f(r)={L_r(a,b)}/{L_r(a,c)}\) is strictly decreasing for \(-\infty <r<\infty\); this result answers a conjecture of Sampaio in integral form.

MSC:

26D15 Inequalities for sums, series and integrals
26E60 Means
PDF BibTeX XML Cite
Full Text: DOI