zbMATH — the first resource for mathematics

Geometry Search for the term Geometry in any field. Queries are case-independent.
Funct* Wildcard queries are specified by * (e.g. functions, functorial, etc.). Otherwise the search is exact.
"Topological group" Phrases (multi-words) should be set in "straight quotation marks".
au: Bourbaki & ti: Algebra Search for author and title. The and-operator & is default and can be omitted.
Chebyshev | Tschebyscheff The or-operator | allows to search for Chebyshev or Tschebyscheff.
"Quasi* map*" py: 1989 The resulting documents have publication year 1989.
so: Eur* J* Mat* Soc* cc: 14 Search for publications in a particular source with a Mathematics Subject Classification code (cc) in 14.
"Partial diff* eq*" ! elliptic The not-operator ! eliminates all results containing the word elliptic.
dt: b & au: Hilbert The document type is set to books; alternatively: j for journal articles, a for book articles.
py: 2000-2015 cc: (94A | 11T) Number ranges are accepted. Terms can be grouped within (parentheses).
la: chinese Find documents in a given language. ISO 639-1 language codes can also be used.

a & b logic and
a | b logic or
!ab logic not
abc* right wildcard
"ab c" phrase
(ab c) parentheses
any anywhere an internal document identifier
au author, editor ai internal author identifier
ti title la language
so source ab review, abstract
py publication year rv reviewer
cc MSC code ut uncontrolled term
dt document type (j: journal article; b: book; a: book article)
Vectorial form of Ekeland-type variational principle with applications to vector equilibrium problems and fixed point theory. (English) Zbl 1127.49015
Summary: This paper introduces a vectorial form of equilibrium version of Ekeland-type variational principle. Some equivalent results to our variational principle are given. As applications, we derive the existence of solutions of a vector equilibrium problem in the setting of complete quasi-metric spaces with a $W$-distance. Caristi-Kirk fixed point theorem for multivalued maps is also established in a more general setting.

49J53Set-valued and variational analysis
49J27Optimal control problems in abstract spaces (existence)
47H10Fixed-point theorems for nonlinear operators on topological linear spaces
Full Text: DOI
[1] Ansari, Q. H.: Vector equilibrium problems and vector variational inequalities. Vector variational inequalities and vector equilibria. Mathematical theories, 1-16 (2000) · Zbl 0992.49012
[2] Ansari, Q. H.; Konnov, I. V.; Yao, J. C.: Existence of a solution and variational principles for vector equilibrium problems. J. optim. Theory appl. 110, No. 3, 481-492 (2001) · Zbl 0988.49004
[3] Ansari, Q. H.; Konnov, I. V.; Yao, J. C.: Characterizations of solutions for vector equilibrium problems. J. optim. Theory appl. 113, No. 3, 435-447 (2002) · Zbl 1012.90055
[4] Aubin, J. -P.: Mathematical methods of game and economic theory. (1979) · Zbl 0452.90093
[5] Aubin, J. -P.; Ekeland, I.: Applied nonlinear analysis. (1984) · Zbl 0641.47066
[6] Aubin, J. -P.; Frankowska, H.: Set-valued analysis. (1990) · Zbl 0713.49021
[7] Bianchi, M.; Hadjisavvas, N.; Schaible, S.: Vector equilibrium problems with generalized monotone bifunctions. J. optim. Theory appl. 92, 527-542 (1997) · Zbl 0878.49007
[8] Bianchi, M.; Kassay, G.; Pini, R.: Existence of equilibria via Ekeland’s principle. J. math. Anal. appl. 305, 502-512 (2005) · Zbl 1061.49005
[9] Blum, E.; Oettli, W.: From optimization and variational inequalities to equilibrium problems. Math. student 63, No. 1 -- 4, 123-145 (1994) · Zbl 0888.49007
[10] Caristi, J.; Kirk, W. A.: Geometric fixed point theory and inwardness conditions. Lecture notes in math. 490, 74-83 (1975) · Zbl 0315.54052
[11] Chen, G. Y.; Huang, X. X.: Stability results for Ekeland’s &z.epsiv; variational principle for vector valued functions. Math. methods oper. Res. 48, 97-103 (1998) · Zbl 0941.49011
[12] Chen, G. Y.; Huang, X. X.: Ekeland’s &z.epsiv;-variational principle for set-valued mappings. Math. methods oper. Res. 48, 181-186 (1998) · Zbl 0936.49012
[13] Chen, G. Y.; Yang, X. Q.; Yu, H.: A nonlinear scalarization function and generalized quasi-vector equilibrium problems. J. global optim. 32, 451-466 (2005) · Zbl 1130.90413
[14] Ekeland, I.: Sur LES probléms variationnels. C. R. Acad. sci. Paris 275, 1057-1059 (1972) · Zbl 0249.49004
[15] Ekeland, I.: On the variational principle. J. math. Anal. appl. 47, 324-353 (1974) · Zbl 0286.49015
[16] Ekeland, I.: On convex minimization problems. Bull. amer. Math. soc. (N.S.) 1, No. 3, 445-474 (1979) · Zbl 0441.49011
[17] Facchinei, F.; Pang, J. -S.: Finite dimensional variational inequalities and complementarity problems, I. (2003) · Zbl 1062.90001
[18] Feng, Y. Q.; Liu, S. Y.: Fixed point theorems for multivalued contractive mappings and multi-valued caristi type mappings. J. math. Anal. appl. 317, 103-112 (2006) · Zbl 1094.47049
[19] Flores-Bazán, F.: Existence theory for finite-dimensional pseudomonotone equilibrium problems. Acta appl. Math. 77, 249-297 (2003) · Zbl 1053.90110
[20] Gerth (Tammer), Chr.; Weidner, P.: Nonconvex separation theorems and some applications in vector optimization. J. optim. Theory appl. 67, 297-320 (1990) · Zbl 0692.90063
[21] Giannessi, F.: Theorems of the alternative, quadratic programs and complementarity problems. Variational inequalities and complementarity problems, 151-186 (1980) · Zbl 0484.90081
[22] Giannessi, F.: Vector variational inequalities and vector equilibria. Mathematical theories. (2000) · Zbl 0952.00009
[23] Göpfert, A.; Tammer, Chr.; Riahi, H.; Zălinescu, C.: Variational methods in partially ordered spaces. (2003)
[24] Göpfert, A.; Tammer, Chr.; Zălinescu, C.: On the vectorial Ekeland’s variational principle and minimal points in product spaces. Nonlinear anal. 39, 909-922 (2000) · Zbl 0997.49019
[25] Kada, O.; Suzuki, T.; Takahashi, W.: Nonconvex minimization theorems and fixed point theorems in complete metric spaces. Math. japonica 44, No. 2, 381-391 (1996) · Zbl 0897.54029
[26] Lin, L. J.: Existence results for primal and dual generalized vector equilibrium problems with applications to generalized semi-infinite programming. J. global optim. 33, 579-595 (2005) · Zbl 1097.90069
[27] Luc, T. D.: Theory of vector optimization. Lecture notes in econom. And math. Systems 319 (1989)
[28] Oettli, W.; Théra, M.: Equivalents of Ekeland’s principle. Bull. austral. Math. soc. 48, 385-392 (1993) · Zbl 0793.54025
[29] Park, S.: On generalizations of the Ekeland-type variational principles. Nonlinear anal. 39, 881-889 (2000) · Zbl 1044.49500
[30] Takahashi, W.: Nonlinear functional analysis. (2000) · Zbl 0997.47002
[31] Tammer, Chr.: A generalization of Ekeland’s variational principle. Optimization 25, 129-141 (1992) · Zbl 0817.90098