Meyer, Christian Second-order sufficient optimality conditions for a semilinear optimal control problem with nonlocal radiation interface conditions. (English) Zbl 1127.49020 ESAIM, Control Optim. Calc. Var. 13, No. 4, 750-775 (2007). Summary: We consider a control constrained optimal control problem governed by a semilinear elliptic equation with nonlocal interface conditions. These conditions occur during the modeling of diffuse-gray conductive-radiative heat transfer. After stating first-order necessary conditions, second-order sufficient conditions are derived that account for strongly active sets. These conditions ensure local optimality in an \(L^s\)-neighborhood of a reference function whereby the underlying analysis allows to use weaker norms than \(L^\infty\). Cited in 2 Documents MSC: 49K20 Optimality conditions for problems involving partial differential equations 35J65 Nonlinear boundary value problems for linear elliptic equations 80M50 Optimization problems in thermodynamics and heat transfer 35B37 PDE in connection with control problems (MSC2000) Keywords:optimal control; semilinear elliptic equations; nonlocal interface conditions; second-order sufficient optimality conditions × Cite Format Result Cite Review PDF Full Text: DOI Numdam EuDML References: [1] J. Bonnans , Second order analysis for control constrained optimal control problems of semilinear elliptic systems . Appl. Math. Optim. 38 ( 1998 ) 303 - 325 . Zbl 0917.49020 · Zbl 0917.49020 · doi:10.1007/s002459900093 [2] H. Brezis , Analyse fonctionelle . Masson, Paris ( 1983 ). MR 697382 | Zbl 0511.46001 · Zbl 0511.46001 [3] E. Casas and M. Mateos , Second order sufficient optimality conditions for semilinear elliptic control problems with finitely many state constraints . SIAM J. Control Optim. 40 ( 2002 ) 1431 - 1454 . Zbl 1037.49024 · Zbl 1037.49024 · doi:10.1137/S0363012900382011 [4] E. Casas , F. Tröltzsch and A. Unger , Second order sufficient optimality conditions for a nonlinear elliptic control problem . J. Anal. Appl. 15 ( 1996 ) 687 - 707 . Zbl 0879.49020 · Zbl 0879.49020 · doi:10.4171/ZAA/723 [5] A.L. Dontchev , W.W. Hager , A.B. Poore and B. Yang , Optimality, stability, and convergence in optimal control . Appl. Math. Optim. 31 ( 1995 ) 297 - 326 . Zbl 0821.49022 · Zbl 0821.49022 · doi:10.1007/BF01215994 [6] O. Klein , P. Philip and J. Sprekels , Modeling and simulation of sublimation growth of SiC bulk single crystals . Interfaces Free Boundaries 6 ( 2004 ) 295 - 314 . Zbl 1081.35117 · Zbl 1081.35117 · doi:10.4171/IFB/101 [7] M. Laitinen and T. Tiihonen , Conductive-radiative heat transfer in grey materials . Quart. Appl. Math. 59 ( 2001 ) 737 - 768 . Zbl pre01953521 · Zbl 1290.35270 [8] C. Meyer , P. Philip , and F. Tröltzsch , Optimal control of a semilinear PDE with nonlocal radiation interface conditions . SIAM J. Control Optim. 45 ( 2006 ) 699 - 721 . Zbl 1109.49026 · Zbl 1109.49026 · doi:10.1137/040617753 [9] H.-J. Rost , D. Siche , J. Dolle , W. Eiserbeck , T. Müller , D. Schulz , G. Wagner and J. Wollweber , Influence of different growth parameters and related conditions on 6H-SiC crystals grown by the modified Lely method . Mater. Sci. Eng. B 61 - 62 ( 1999 ) 68 - 72 . [10] T. Tiihonen , A nonlocal problem arising from heat radiation on non-convex surfaces . Eur. J. App. Math. 8 ( 1997 ) 403 - 416 . Zbl 0889.45013 · Zbl 0889.45013 [11] T. Tiihonen , Stefan-Boltzmann radiation on non-convex surfaces . Math. Meth. Appl. Sci. 20 ( 1997 ) 47 - 57 . Zbl 0872.35044 · Zbl 0872.35044 · doi:10.1002/(SICI)1099-1476(19970110)20:1<47::AID-MMA847>3.0.CO;2-B [12] F. Tröltzsch and D. Wachsmuth , Second-order sufficient optimality conditions for the optimal control of Navier-Stokes equations . ESAIM: COCV 12 ( 2006 ) 93 - 119 . Numdam | Zbl 1111.49017 · Zbl 1111.49017 · doi:10.1051/cocv:2005029 This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.