×

zbMATH — the first resource for mathematics

\(t^{1/3}\) superdiffusivity of finite-range asymmetric exclusion processes on \({\mathbb{Z}}\). (English) Zbl 1127.60091
The authors consider finite-range asymmetric exclusion processes (AEP) on the integer lattice \({\mathbb Z}\) with non-zero drift. For such processes they prove that the diffusivity \(D (t)\) satisfies \(D (t) \geq Ct ^{1/3}\). For the particular case of a totally asymmetric simple exclusion process (TASEP) the estimate confirms previous results of P. L. Ferrari and H. Spohn [Commun. Math. Phys. 265, No. 1, 1–44, erratum 45–46 (2006; Zbl 1118.82032)] obtained by means of a different technique, thus partially confirming the predicted universality of the abovementioned results.

MSC:
60K35 Interacting random processes; statistical mechanics type models; percolation theory
82C22 Interacting particle systems in time-dependent statistical mechanics
82B41 Random walks, random surfaces, lattice animals, etc. in equilibrium statistical mechanics
82C31 Stochastic methods (Fokker-Planck, Langevin, etc.) applied to problems in time-dependent statistical mechanics
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] Bernardin C. (2004). Fluctuations in the occupation time of a site in the asymmetric simple exclusion process. Ann. Probab. 32(1B): 855–879 · Zbl 1071.60096
[2] Bertini L. and Giacomin G. (1997). Stochastic Burgers and KPZ equations from particle systems. Commun. Math. Phys. 183(3): 571–607 · Zbl 0874.60059
[3] Beijeren H., van Kutner R. and Spohn H. (1985). Excess noise for driven diffusive systems. Phys. Rev. Lett. 54: 2026–2029
[4] Bramson M. and Mountford T. (2002). Stationary blocking measures for one-dimensional nonzero mean exclusion processes. Ann. Probab. 30(3): 1082–1130 · Zbl 1042.60062
[5] Ferrari P.A. and Fontes L.R.G. (1994). Current fluctuations for the asymmetric simple exclusion process. Ann. Probab. 22(2): 820–832 · Zbl 0806.60099
[6] Ferrari P.L. and Spohn H. (2006). Scaling limit for the space-time covariance of the stationary totally asymmetric simple exclusion process. Commun. Math. Phys. 265(1): 1–44 · Zbl 1118.82032
[7] Forster D., Nelson D. and Stephen M.J. (1977). Large-distance and long time properties of a randomly stirred fluid. Phys. Rev. A 16: 732–749
[8] Kardar K., Parisi G. and Zhang Y.Z. (1986). Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56: 889–892 · Zbl 1101.82329
[9] Liggett T.M. (1985). Interacting particle systems. Grundlehren der Mathematischen issenschaften 276. Springer-Verlag, New York · Zbl 0559.60078
[10] Landim C., Olla S. and Yau H.T. (1996). Some properties of the diffusion coefficient for asymmetric simple exclusion processes. Ann. Probab. 24(4): 1779–1808 · Zbl 0872.60078
[11] Landim C., Quastel J., Salmhofer M. and Yau H.-T. (2004). Superdiffusivity of asymmetric exclusion process in dimensions one and two. Commun. Math. Phys. 244(3): 455–481 · Zbl 1064.60164
[12] Landim C. and Yau H.-T. (1997). Fluctuation-dissipation equation of asymmetric simple exclusion processes, Probab. Theory Related Fields 108(3): 321–356 · Zbl 0884.60092
[13] Prähofer, M., Spohn, H.: Current fluctuations for the totally asymmetric simple exclusion process. In: In and out of equilibrium (Mambucaba, 2000), Progr. Probab. 51, Boston, MA: Birkhäuser Boston, 2002, pp. 185–204 · Zbl 1015.60093
[14] Sethuraman S. (2003). An equivalence of H norms for the simple exclusion process. Ann. Prob. 31(1): 35–62 · Zbl 1019.60091
[15] Sethuraman S. and Xu L. (1996). A central limit theorem for reversible exclusion and zero-range particle systems. Ann. Probab. 24(4): 1842–1870 · Zbl 0872.60079
[16] Varadhan, S.R.S.: Lectures on hydrodynamic scaling. In: Hydrodynamic limits and related topics (Toronto, ON, 1998), Fields Inst. Commun. 27, Providence, RI: Amer. Math. Soc., 2000, pp. 3–40 · Zbl 1060.82514
[17] Yau H.-T. (2004). (log t)2/3 law of the two dimensional asymmetric simple exclusion process. Ann. of Math. (2) 159(1): 377–405 · Zbl 1060.60099
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.